BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19461864)

  • 1. Osteoclast-like multi-nucleated giant cells in uraemic tumoral calcinosis.
    Yamada S; Taniguchi M; Tokumoto M; Tsuruya K; Iida M
    NDT Plus; 2009 Apr; 2(2):155-157. PubMed ID: 19461864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical and genetic analysis of idiopathic normophosphatemic tumoral calcinosis in 19 patients.
    Zuo QY; Cao X; Liu BY; Yan D; Xin Z; Niu XH; Li C; Deng W; Dong ZY; Yang JK
    J Endocrinol Invest; 2020 Feb; 43(2):173-183. PubMed ID: 31535357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of new bone-like tissue formation in uremic tumoral calcinosis.
    Hiramatsu R; Ubara Y; Hayami N; Yamanouchi M; Hasegawa E; Sumida K; Suwabe T; Hoshino J; Sawa N; Amizuka N; Takaichi K
    Bone; 2013 Feb; 52(2):684-8. PubMed ID: 23142362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoclast 121F antigen expression during osteoblast conditioned medium induction of osteoclast-like cells in vitro: relationship to calcitonin responsiveness, tartrate resistant acid phosphatase levels, and bone resorptive activity.
    Collin-Osdoby P; Oursler MJ; Rothe L; Webber D; Anderson F; Osdoby P
    J Bone Miner Res; 1995 Jan; 10(1):45-58. PubMed ID: 7747630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Idiopathic sporadic tumoral calcinosis of the hip: successful oral bisphosphonate therapy.
    Jacob JJ; Mathew K; Thomas N
    Endocr Pract; 2007; 13(2):182-6. PubMed ID: 17490934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multinucleated giant cells in atherosclerotic plaques of human carotid arteries: Identification of osteoclast-like cells and their specific proteins in artery wall.
    Qiao JH; Mishra V; Fishbein MC; Sinha SK; Rajavashisth TB
    Exp Mol Pathol; 2015 Dec; 99(3):654-62. PubMed ID: 26551087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carpal Tunnel Syndrome Caused by Tumoral Calcinosis.
    Inui A; Suzuki T; Kokubu T; Sakata R; Mifune Y; Kurosaka M
    Case Rep Orthop; 2015; 2015():170873. PubMed ID: 26266068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MCP-1-induced human osteoclast-like cells are tartrate-resistant acid phosphatase, NFATc1, and calcitonin receptor-positive but require receptor activator of NFkappaB ligand for bone resorption.
    Kim MS; Day CJ; Selinger CI; Magno CL; Stephens SR; Morrison NA
    J Biol Chem; 2006 Jan; 281(2):1274-85. PubMed ID: 16280328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human osteoclast and giant cell differentiation: the apparent switch from nonspecific esterase to tartrate resistant acid phosphatase activity coincides with the in situ expression of osteopontin mRNA.
    Connor JR; Dodds RA; James IE; Gowen M
    J Histochem Cytochem; 1995 Dec; 43(12):1193-201. PubMed ID: 8537635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumoral calcinosis of the filum terminale.
    Sharma M; Sinha R; Hussey K; Fouyas IP
    Neurosurgery; 2005 Sep; 57(3):E596; discussion E596. PubMed ID: 16145508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greater trochanteric pain syndrome due to tumoral calcinosis in a patient with chronic kidney disease.
    Baek D; Lee SE; Kim WJ; Jeon S; Lee K; Jung J; Joo H; Park J; Kim Y; Choi YG
    Pain Physician; 2014; 17(6):E775-82. PubMed ID: 25415793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leiomyosarcoma of the heart and its pulmonary metastasis, both with prominent osteoclast-like multinucleated giant cells expressing tartrate-resistant acid phosphatase activity.
    Katoh M; Shigematsu H
    Pathol Int; 1999 Jan; 49(1):74-8. PubMed ID: 10227728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role played by cell-substrate interactions in the pathogenesis of osteoclast-mediated peri-implant osteolysis.
    Shen Z; Crotti TN; McHugh KP; Matsuzaki K; Gravallese EM; Bierbaum BE; Goldring SR
    Arthritis Res Ther; 2006; 8(3):R70. PubMed ID: 16613614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of continuous calcitonin treatment on osteoclast-like cell development and calcitonin receptor expression in mouse bone marrow cultures.
    Ikegame M; Rakopoulos M; Martin TJ; Moseley JM; Findlay DM
    J Bone Miner Res; 1996 Apr; 11(4):456-65. PubMed ID: 8992876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Tumoral calcinosis at an unusual site in a haemodialysis patient].
    Remy-Leroux V; Reguiaï Z; Labrousse AL; Zakine EM; Clavel P; Bernard P
    Ann Dermatol Venereol; 2009 Apr; 136(4):350-4. PubMed ID: 19361703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumoral calcinosis. An ultrastructural analysis and consideration of pathogenesis.
    Kindblom LG; Gunterberg B
    APMIS; 1988 Apr; 96(4):368-76. PubMed ID: 3370160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epithelioid leiomyosarcoma with osteoclast-like giant cells in the rectum.
    Terada T; Endo K; Maeta H; Horie S; Ohta T
    Arch Pathol Lab Med; 2000 Mar; 124(3):438-40. PubMed ID: 10705403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Juxta-articular tumoral calcinosis associated with the temporomandibular joint: a case report and concise review.
    Sha Y; Hong K; Liew MKM; Lum JL; Wong RCW
    BMC Oral Health; 2019 Jul; 19(1):138. PubMed ID: 31288794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumoral calcinosis in the upper cervical spine: a case report.
    Kokubun S; Ozawa H; Sakurai M; Tanaka Y
    Spine (Phila Pa 1976); 1996 Jan; 21(2):249-52. PubMed ID: 8720412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic characterization of mononuclear and multinucleated cells of giant cell reparative granuloma of small bones.
    Itonaga I; Schulze E; Burge PD; Gibbons CL; Ferguson D; Athanasou NA
    J Pathol; 2002 Sep; 198(1):30-6. PubMed ID: 12210060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.