These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19462099)

  • 1. The ratio of cholesterol 5,6-secosterols formed from ozone and singlet oxygen offers insight into the oxidation of cholesterol in vivo.
    Wentworth AD; Song BD; Nieva J; Shafton A; Tripurenani S; Wentworth P
    Chem Commun (Camb); 2009 Jun; (21):3098-100. PubMed ID: 19462099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly sensitive fluorescent method for the detection of cholesterol aldehydes formed by ozone and singlet molecular oxygen.
    Mansano FV; Kazaoka RM; Ronsein GE; Prado FM; Genaro-Mattos TC; Uemi M; Di Mascio P; Miyamoto S
    Anal Chem; 2010 Aug; 82(16):6775-81. PubMed ID: 20704366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hock cleavage of cholesterol 5alpha-hydroperoxide: an ozone-free pathway to the cholesterol ozonolysis products identified in arterial plaque and brain tissue.
    Brinkhorst J; Nara SJ; Pratt DA
    J Am Chem Soc; 2008 Sep; 130(37):12224-5. PubMed ID: 18722442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of cholesterol autoxidation products in the pathogenesis of inflammatory diseases.
    Miyoshi N; Iuliano L; Tomono S; Ohshima H
    Biochem Biophys Res Commun; 2014 Apr; 446(3):702-8. PubMed ID: 24412245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of cholesterol carboxyaldehyde by the reaction of singlet molecular oxygen [O2 (1Delta(g))] as well as ozone with cholesterol.
    Uemi M; Ronsein GE; Miyamoto S; Medeiros MH; Di Mascio P
    Chem Res Toxicol; 2009 May; 22(5):875-84. PubMed ID: 19358613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assay of protein and peptide adducts of cholesterol ozonolysis products by hydrophobic and click enrichment methods.
    Windsor K; Genaro-Mattos TC; Miyamoto S; Stec DF; Kim HY; Tallman KA; Porter NA
    Chem Res Toxicol; 2014 Oct; 27(10):1757-68. PubMed ID: 25185119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Products of Cholesterol Autoxidation in Phospholipid Bilayers and the Formation of Secosterols Derived Therefrom.
    Schaefer EL; Zopyrus N; Zielinski ZAM; Facey GA; Pratt DA
    Angew Chem Int Ed Engl; 2020 Jan; 59(5):2089-2094. PubMed ID: 31793116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol and related sterols autoxidation.
    Zerbinati C; Iuliano L
    Free Radic Biol Med; 2017 Oct; 111():151-155. PubMed ID: 28428001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of cholesterol ozonolysis products through an ozone-free mechanism mediated by the myeloperoxidase-H2O2-chloride system.
    Tomono S; Miyoshi N; Sato K; Ohba Y; Ohshima H
    Biochem Biophys Res Commun; 2009 May; 383(2):222-7. PubMed ID: 19345674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ozonation of cholesterol in the presence of ethanol: identification of a cytotoxic ethoxyhydroperoxide molecule.
    Tagiri-Endo M; Nakagawa K; Sugawara T; Ono K; Miyazawa T
    Lipids; 2004 Mar; 39(3):259-64. PubMed ID: 15233405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathways of cholesterol oxidation via non-enzymatic mechanisms.
    Iuliano L
    Chem Phys Lipids; 2011 Sep; 164(6):457-68. PubMed ID: 21703250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The antibody-catalyzed water oxidation pathway--a new chemical arm to immune defense?
    Nieva J; Wentworth P
    Trends Biochem Sci; 2004 May; 29(5):274-8. PubMed ID: 15130564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of cholesterol ozonolysis products in vitro and in vivo through a myeloperoxidase-dependent pathway.
    Tomono S; Miyoshi N; Shiokawa H; Iwabuchi T; Aratani Y; Higashi T; Nukaya H; Ohshima H
    J Lipid Res; 2011 Jan; 52(1):87-97. PubMed ID: 20921334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of cytotoxic 9-oxononanoyl secosterol aldehydes in human low-density lipoprotein.
    Miyoshi N; Iwasaki N; Tomono S; Higashi T; Ohshima H
    Free Radic Biol Med; 2013 Jul; 60():73-9. PubMed ID: 23395781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of biologically active oxysterols during ozonolysis of cholesterol present in lung surfactant.
    Pulfer MK; Murphy RC
    J Biol Chem; 2004 Jun; 279(25):26331-8. PubMed ID: 15096493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen, oxysterols, ouabain, and ozone: a cautionary tale.
    Smith LL
    Free Radic Biol Med; 2004 Aug; 37(3):318-24. PubMed ID: 15223065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for HOOO radicals in the formation of alkyl hydrotrioxides (ROOOH) and hydrogen trioxide (HOOOH) in the ozonation of C-H bonds in hydrocarbons.
    Cerkovnik J; Erzen E; Koller J; Plesnicar B
    J Am Chem Soc; 2002 Jan; 124(3):404-9. PubMed ID: 11792209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of (+)-zerumin B using a regioselective singlet oxygen furan oxidation.
    Margaros I; Vassilikogiannakis G
    J Org Chem; 2008 Mar; 73(5):2021-3. PubMed ID: 18247492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proatherogenic effects of the cholesterol ozonolysis products, atheronal-A and atheronal-B.
    Takeuchi C; Galvé R; Nieva J; Witter DP; Wentworth AD; Troseth RP; Lerner RA; Wentworth P
    Biochemistry; 2006 Jun; 45(23):7162-70. PubMed ID: 16752907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for ozone formation in human atherosclerotic arteries.
    Wentworth P; Nieva J; Takeuchi C; Galve R; Wentworth AD; Dilley RB; DeLaria GA; Saven A; Babior BM; Janda KD; Eschenmoser A; Lerner RA
    Science; 2003 Nov; 302(5647):1053-6. PubMed ID: 14605372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.