BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2475 related articles for article (PubMed ID: 19462193)

  • 1. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. Karst.) to heavy metals in pure mixture and in soil eluates.
    Schröder P; Fischer C; Debus R; Wenzel A
    Environ Sci Pollut Res Int; 2003; 10(4):225-34. PubMed ID: 12943006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plants for waste water treatment--effects of heavy metals on the detoxification system of Typha latifolia.
    Lyubenova L; Schröder P
    Bioresour Technol; 2011 Jan; 102(2):996-1004. PubMed ID: 20951580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals.
    Lyubenova L; Nehnevajova E; Herzig R; Schröder P
    Environ Sci Pollut Res Int; 2009 Jul; 16(5):573-81. PubMed ID: 19440744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.
    Manousaki E; Kalogerakis N
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide.
    Obermeier M; Schröder CA; Helmreich B; Schröder P
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18495-507. PubMed ID: 26286797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of organic xenobiotics - Glutathione dependent detoxification in Phragmites plants from European treatment sites.
    Schröder P; Daubner D; Maier H; Neustifter J; Debus R
    Bioresour Technol; 2008 Oct; 99(15):7183-91. PubMed ID: 18313917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-criteria decision analysis of optimal planting for enhancing phytoremediation of trace heavy metals in mining sites under interval residual contaminant concentrations.
    Lu J; Lu H; Li J; Liu J; Feng S; Guan Y
    Environ Pollut; 2019 Dec; 255(Pt 2):113255. PubMed ID: 31563784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidative responses of the tissues of two wild populations of Pelophylax kl. esculentus frogs to heavy metal pollution.
    Prokić MD; Borković-Mitić SS; Krizmanić II; Mutić JJ; Vukojević V; Nasia M; Gavrić JP; Despotović SG; Gavrilović BR; Radovanović TB; Pavlović SZ; Saičić ZS
    Ecotoxicol Environ Saf; 2016 Jun; 128():21-9. PubMed ID: 26874985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidative responses of duckweed (Lemna minor L.) to short-term copper exposure.
    Razinger J; Dermastia M; Drinovec L; Drobne D; Zrimec A; Koce JD
    Environ Sci Pollut Res Int; 2007 May; 14(3):194-201. PubMed ID: 17561779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Cd and Pb on soil microbial community structure and activities.
    Khan S; Hesham Ael-L; Qiao M; Rehman S; He JZ
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):288-96. PubMed ID: 19333640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alleviating lead-induced phytotoxicity and enhancing the phytoremediation of castor bean (
    Bamagoos AA; Mallhi ZI; El-Esawi MA; Rizwan M; Ahmad A; Hussain A; Alharby HF; Alharbi BM; Ali S
    Int J Phytoremediation; 2022; 24(9):933-944. PubMed ID: 34634959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.
    Klink A
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of arbuscular mycorrhizal fungi on the growth and toxic element uptake of Phragmites australis (Cav.) Trin. ex Steud under zinc/cadmium stress.
    You Y; Wang L; Ju C; Wang G; Ma F; Wang Y; Yang D
    Ecotoxicol Environ Saf; 2021 Apr; 213():112023. PubMed ID: 33578096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction of spruce cells toward heavy metals and the influence of culture conditions.
    Schröder P; Fischer C
    Environ Sci Pollut Res Int; 2004; 11(6):388-93. PubMed ID: 15603528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater.
    Fatima RA; Ahmad M
    Sci Total Environ; 2005 Jun; 346(1-3):256-73. PubMed ID: 15993699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant response of Phragmites australis to Cu and Cd contamination.
    Rocha AC; Almeida CM; Basto MC; Vasconcelos MT
    Ecotoxicol Environ Saf; 2014 Nov; 109():152-60. PubMed ID: 25193786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 124.