BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19462464)

  • 1. Prediction of function changes associated with single-point protein mutations using support vector machines (SVMs).
    Gao S; Zhang N; Duan GY; Yang Z; Ruan JS; Zhang T
    Hum Mutat; 2009 Aug; 30(8):1161-6. PubMed ID: 19462464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of protein stability changes for single-site mutations using support vector machines.
    Cheng J; Randall A; Baldi P
    Proteins; 2006 Mar; 62(4):1125-32. PubMed ID: 16372356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information.
    Capriotti E; Calabrese R; Casadio R
    Bioinformatics; 2006 Nov; 22(22):2729-34. PubMed ID: 16895930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of estimated evolutionary strength at the codon level improves the prediction of disease-related protein mutations in humans.
    Capriotti E; Arbiza L; Casadio R; Dopazo J; Dopazo H; Marti-Renom MA
    Hum Mutat; 2008 Jan; 29(1):198-204. PubMed ID: 17935148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition.
    Shi JY; Zhang SW; Pan Q; Cheng YM; Xie J
    Amino Acids; 2007 Jul; 33(1):69-74. PubMed ID: 17235454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust prediction of mutation-induced protein stability change by property encoding of amino acids.
    Kang S; Chen G; Xiao G
    Protein Eng Des Sel; 2009 Feb; 22(2):75-83. PubMed ID: 19054789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knowledge acquisition and development of accurate rules for predicting protein stability changes.
    Huang LT; Gromiha MM; Hwang SF; Ho SY
    Comput Biol Chem; 2006 Dec; 30(6):408-15. PubMed ID: 17000135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of conformational stability of protein mutants from 3D pseudo-folding graph representation of protein sequences using support vector machines.
    Fernández M; Caballero J; Fernández L; Abreu JI; Acosta G
    Proteins; 2008 Jan; 70(1):167-75. PubMed ID: 17654549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor.
    Kim H; Park H
    Proteins; 2004 Feb; 54(3):557-62. PubMed ID: 14748002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-class support vector machines for protein secondary structure prediction.
    Nguyen MN; Rajapakse JC
    Genome Inform; 2003; 14():218-27. PubMed ID: 15706536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination of outer membrane proteins using support vector machines.
    Park KJ; Gromiha MM; Horton P; Suwa M
    Bioinformatics; 2005 Dec; 21(23):4223-9. PubMed ID: 16204348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of protein secondary structure content using amino acid composition and evolutionary information.
    Lee S; Lee BC; Kim D
    Proteins; 2006 Mar; 62(4):1107-14. PubMed ID: 16345074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of protein structure class by coupling improved genetic algorithm and support vector machine.
    Li ZC; Zhou XB; Lin YR; Zou XY
    Amino Acids; 2008 Oct; 35(3):581-90. PubMed ID: 18427714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein subcellular localization prediction using artificial intelligence technology.
    Nair R; Rost B
    Methods Mol Biol; 2008; 484():435-63. PubMed ID: 18592195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequences.
    Chen YC; Lin YS; Lin CJ; Hwang JK
    Proteins; 2004 Jun; 55(4):1036-42. PubMed ID: 15146500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting DNA- and RNA-binding proteins from sequences with kernel methods.
    Shao X; Tian Y; Wu L; Wang Y; Jing L; Deng N
    J Theor Biol; 2009 May; 258(2):289-93. PubMed ID: 19490865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the performance of an SVM-based method for predicting protein-protein interactions.
    Dohkan S; Koike A; Takagi T
    In Silico Biol; 2006; 6(6):515-29. PubMed ID: 17518762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. gamma-Turn types prediction in proteins using the support vector machines.
    Jahandideh S; Sarvestani AS; Abdolmaleki P; Jahandideh M; Barfeie M
    J Theor Biol; 2007 Dec; 249(4):785-90. PubMed ID: 17936305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.