BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19462481)

  • 21. Protein delivery using nanoparticles based on microemulsions with different structure-types.
    Graf A; Jack KS; Whittaker AK; Hook SM; Rades T
    Eur J Pharm Sci; 2008 Apr; 33(4-5):434-44. PubMed ID: 18329862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability of ascorbyl palmitate in topical microemulsions.
    Spiclin P; Gasperlin M; Kmetec V
    Int J Pharm; 2001 Jul; 222(2):271-9. PubMed ID: 11427357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocompatible microemulsions based on limonene: formulation, structure, and applications.
    Papadimitriou V; Pispas S; Syriou S; Pournara A; Zoumpanioti M; Sotiroudis TG; Xenakis A
    Langmuir; 2008 Apr; 24(7):3380-6. PubMed ID: 18303927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of transdermal delivery of theophylline using microemulsion vehicle.
    Zhao X; Liu JP; Zhang X; Li Y
    Int J Pharm; 2006 Dec; 327(1-2):58-64. PubMed ID: 16926077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microemulsions containing lecithin and sugar-based surfactants: nanoparticle templates for delivery of proteins and peptides.
    Graf A; Ablinger E; Peters S; Zimmer A; Hook S; Rades T
    Int J Pharm; 2008 Feb; 350(1-2):351-60. PubMed ID: 17923347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microemulsions: an overview and pharmaceutical applications.
    Tenjarla S
    Crit Rev Ther Drug Carrier Syst; 1999; 16(5):461-521. PubMed ID: 10635455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Encapsulation artocarpanone and ascorbic acid in O/W microemulsions: Preparation, characterization, and antibrowning effects in apple juice.
    Dong X; Zhu Q; Dai Y; He J; Pan H; Chen J; Zheng ZP
    Food Chem; 2016 Feb; 192():1033-40. PubMed ID: 26304444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of polyethylene glycol linker chain length of folate-linked microemulsions loading aclacinomycin A on targeting ability and antitumor effect in vitro and in vivo.
    Shiokawa T; Hattori Y; Kawano K; Ohguchi Y; Kawakami H; Toma K; Maitani Y
    Clin Cancer Res; 2005 Mar; 11(5):2018-25. PubMed ID: 15756028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The hydrophobicity of silicone-based oils and surfactants and their use in reactive microemulsions.
    Castellino V; Cheng YL; Acosta E
    J Colloid Interface Sci; 2011 Jan; 353(1):196-205. PubMed ID: 20926096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved drug delivery using microemulsions: rationale, recent progress, and new horizons.
    Bagwe RP; Kanicky JR; Palla BJ; Patanjali PK; Shah DO
    Crit Rev Ther Drug Carrier Syst; 2001; 18(1):77-140. PubMed ID: 11326744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impairment of ascorbic acid's anti-oxidant properties in confined media: inter and intramolecular reactions with air and vanadate at acidic pH.
    Crans DC; Baruah B; Gaidamauskas E; Lemons BG; Lorenz BB; Johnson MD
    J Inorg Biochem; 2008; 102(5-6):1334-47. PubMed ID: 18331759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and antifungal evaluation of a food-grade U-type microemulsion.
    Zhang H; Lu Z; Wang S; Shen Y; Feng F; Zheng X
    J Appl Microbiol; 2008 Oct; 105(4):993-1001. PubMed ID: 18422551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small-angle-neutron-scattering from giant water-in-oil microemulsion droplets. II. Polymer-decorated droplets in a quaternary system.
    Foster T; Sottmann T; Schweins R; Strey R
    J Chem Phys; 2008 Feb; 128(6):064902. PubMed ID: 18282069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microemulsions as carriers for drugs and nutraceuticals.
    Spernath A; Aserin A
    Adv Colloid Interface Sci; 2006 Dec; 128-130():47-64. PubMed ID: 17229398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microemulsions as potential ocular drug delivery systems: phase diagrams and physical properties depending on ingredients.
    Radomska-Soukharev A; Wojciechowska J
    Acta Pol Pharm; 2005; 62(6):465-71. PubMed ID: 16583987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neutron scattering study of the structural change induced by photopolymerization of AOT/D2O/dodecyl acrylate inverse microemulsions.
    Marszalek J; Pojman JA; Page KA
    Langmuir; 2008 Dec; 24(23):13694-700. PubMed ID: 18980349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of microemulsions in dermal and transdermal drug delivery.
    Santos P; Watkinson AC; Hadgraft J; Lane ME
    Skin Pharmacol Physiol; 2008; 21(5):246-59. PubMed ID: 18562799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microemulsions as colloidal vehicle systems for dermal drug delivery. Part IV: Investigation of microemulsion systems based on a eutectic mixture of lidocaine and prilocaine as the colloidal phase by dynamic light scattering.
    Shukla A; Krause A; Neubert RH
    J Pharm Pharmacol; 2003 Jun; 55(6):741-8. PubMed ID: 12841933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs.
    He CX; He ZG; Gao JQ
    Expert Opin Drug Deliv; 2010 Apr; 7(4):445-60. PubMed ID: 20201713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR characterisation and transdermal drug delivery potential of microemulsion systems.
    Kreilgaard M; Pedersen EJ; Jaroszewski JW
    J Control Release; 2000 Dec; 69(3):421-33. PubMed ID: 11102682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.