These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19462487)

  • 1. Percolation and particle transport in the unsaturated zone of a karst aquifer.
    Pronk M; Goldscheider N; Zopfi J; Zwahlen F
    Ground Water; 2009; 47(3):361-9. PubMed ID: 19462487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs.
    Pronk M; Goldscheider N; Zopfi J
    Environ Sci Technol; 2007 Dec; 41(24):8400-5. PubMed ID: 18200870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle transport in a karst aquifer: natural and artificial tracer experiments with bacteria, bacteriophages and microspheres.
    Auckenthaler A; Raso G; Huggenberger P
    Water Sci Technol; 2002; 46(3):131-8. PubMed ID: 12227598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracing water perturbation using NO
    Lorette G; Peyraube N; Lastennet R; Denis A; Sabidussi J; Fournier M; Viennet D; Gonand J; Villanueva JD
    Sci Total Environ; 2020 Jul; 725():138512. PubMed ID: 32302853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between organic micropollutants and hydro-sedimentary processes at a karst spring in south-west Germany.
    Schiperski F; Zirlewagen J; Hillebrand O; Nödler K; Licha T; Scheytt T
    Sci Total Environ; 2015 Nov; 532():360-7. PubMed ID: 26081739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a numerical indicator of microbial contamination for karst springs.
    Butscher C; Auckenthaler A; Scheidler S; Huggenberger P
    Ground Water; 2011; 49(1):66-76. PubMed ID: 20180864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence-based multi-parameter approach to characterize dynamics of organic carbon, faecal bacteria and particles at alpine karst springs.
    Frank S; Goeppert N; Goldscheider N
    Sci Total Environ; 2018 Feb; 615():1446-1459. PubMed ID: 28935241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrological response of karst stream to precipitation variation recognized through the quantitative separation of runoff components.
    Wang F; Chen H; Lian J; Fu Z; Nie Y
    Sci Total Environ; 2020 Dec; 748():142483. PubMed ID: 33113671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretation of environmental tracers in groundwater systems with stagnant water zones.
    Maloszewski P; Stichler W; Zuber A
    Isotopes Environ Health Stud; 2004 Mar; 40(1):21-33. PubMed ID: 15085981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow Cytometry and Fecal Indicator Bacteria Analyses for Fingerprinting Microbial Pollution in Karst Aquifer Systems.
    Vucinic L; O'Connell D; Teixeira R; Coxon C; Gill L
    Water Resour Res; 2022 May; 58(5):e2021WR029840. PubMed ID: 35859924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of road salt contamination in karst aquifers and soils over multiple timescales.
    Robinson HK; Hasenmueller EA
    Sci Total Environ; 2017 Dec; 603-604():94-108. PubMed ID: 28623795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and Attenuation of Particles of Different Density and Surface Charge: A Karst Aquifer Field Study.
    Schiperski F; Zirlewagen J; Scheytt T
    Environ Sci Technol; 2016 Aug; 50(15):8028-35. PubMed ID: 27348254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Molecular Markers to Compare
    Bandy A; Cook K; Fryar AE; Polk J
    J Environ Qual; 2018 Jan; 47(1):88-95. PubMed ID: 29415110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical resistivity imaging of an enhanced aquifer recharge site.
    Fields J; Tandy T; Halihan T; Ross R; Beak D; Neill R; Groves J
    J Geophys Eng; 2022 Oct; 19(5):1095-1110. PubMed ID: 36778603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multitracer experiment to evaluate the attenuation of selected organic micropollutants in a karst aquifer.
    Hillebrand O; Nödler K; Sauter M; Licha T
    Sci Total Environ; 2015 Feb; 506-507():338-43. PubMed ID: 25460968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of β-d-glucuronidase and particle-size distribution for microbiological water quality monitoring in Northern Vietnam.
    Ender A; Goeppert N; Grimmeisen F; Goldscheider N
    Sci Total Environ; 2017 Feb; 580():996-1006. PubMed ID: 27993473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.
    Pang L; Close M; Goltz M; Noonan M; Sinton L
    J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Substances transport in an underground river of typical karst watershed during storm events].
    Yang PH; Kuang YL; Yuan WH; Jia P; He QF; Lin YS
    Huan Jing Ke Xue; 2009 Nov; 30(11):3249-55. PubMed ID: 20063736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved understanding of particle transport in karst groundwater using natural sediments as tracers.
    Goeppert N; Goldscheider N
    Water Res; 2019 Dec; 166():115045. PubMed ID: 31526978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Runoff and nitrogen loss characteristics in soil-epikarst system on a karst shrub hillslope].
    Zhu XF; Chen HS; Fu ZY; Wang KL; Zhang W; Xu QX; Fang RJ
    Ying Yong Sheng Tai Xue Bao; 2017 Jul; 28(7):2197-2206. PubMed ID: 29741050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.