These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 19462501)
1. The range of local wavefront curvatures measurable with Shack-Hartmann wavefront sensors. Campbell CE Clin Exp Optom; 2009 May; 92(3):187-93. PubMed ID: 19462501 [TBL] [Abstract][Full Text] [Related]
2. Measuring ocular aberrations and image quality in peripheral vision with a clinical wavefront aberrometer. Shen J; Thibos LN Clin Exp Optom; 2009 May; 92(3):212-22. PubMed ID: 19462503 [TBL] [Abstract][Full Text] [Related]
4. Wavefront measurements of diffractive and refractive multifocal intraocular lenses in an artificial eye. Campbell CE J Refract Surg; 2008 Mar; 24(3):308-11. PubMed ID: 18416268 [TBL] [Abstract][Full Text] [Related]
5. Problems in the measurement of wavefront aberration for eyes implanted with diffractive bifocal and multifocal intraocular lenses. Charman WN; Montés-Micó R; Radhakrishnan H J Refract Surg; 2008 Mar; 24(3):280-6. PubMed ID: 18416263 [TBL] [Abstract][Full Text] [Related]
6. Describing ocular aberrations with wavefront vergence maps. Nam J; Thibos LN; Iskander DR Clin Exp Optom; 2009 May; 92(3):194-205. PubMed ID: 19302675 [TBL] [Abstract][Full Text] [Related]
7. A wavelength tunable wavefront sensor for the human eye. Manzanera S; Canovas C; Prieto PM; Artal P Opt Express; 2008 May; 16(11):7748-55. PubMed ID: 18545485 [TBL] [Abstract][Full Text] [Related]
8. Reliability of corneal and total wavefront aberration measurements with the SCHWIND Corneal and Ocular Wavefront Analyzers. Holzer MP; Sassenroth M; Auffarth GU J Refract Surg; 2006 Nov; 22(9):917-20. PubMed ID: 17124889 [TBL] [Abstract][Full Text] [Related]
9. Binocular open-view Shack-Hartmann wavefront sensor with consecutive measurements of near triad and spherical aberration. Kobayashi M; Nakazawa N; Yamaguchi T; Otaki T; Hirohara Y; Mihashi T Appl Opt; 2008 Sep; 47(25):4619-26. PubMed ID: 18758533 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors. Liu T; Thibos L; Marin G; Hernandez M Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435 [TBL] [Abstract][Full Text] [Related]
11. Extracting wavefront error from Shack-Hartmann images using spatial demodulation. Sarver EJ; Schwiegerling J; Applegate RA J Refract Surg; 2006 Nov; 22(9):949-53. PubMed ID: 17124895 [TBL] [Abstract][Full Text] [Related]
12. Quantitative comparison of different-shaped wavefront sensors and preliminary results for defocus aberrations on a mechanical eye. Carvalho LA; Chamon W; Schor P; Castro JC Arq Bras Oftalmol; 2006; 69(2):239-47. PubMed ID: 16699677 [TBL] [Abstract][Full Text] [Related]
13. The placido wavefront sensor and preliminary measurement on a mechanical eye. Carvalho LA; Castro JC Optom Vis Sci; 2006 Feb; 83(2):108-18. PubMed ID: 16501413 [TBL] [Abstract][Full Text] [Related]
14. New methods and techniques for sensing the wave aberrations of human eyes. Lombardo M; Lombardo G Clin Exp Optom; 2009 May; 92(3):176-86. PubMed ID: 19243390 [TBL] [Abstract][Full Text] [Related]
15. A new wavefront sensor with polar symmetry: quantitative comparisons with a Shack-Hartmann wavefront sensor. Carvalho LA; Castro J; Chamon W; Schor P J Refract Surg; 2006 Nov; 22(9):954-8. PubMed ID: 17124896 [TBL] [Abstract][Full Text] [Related]
16. Adaptable Shack-Hartmann wavefront sensor with diffractive lenslet arrays to mitigate the effects of scintillation. Lechner D; Zepp A; Eichhorn M; Gładysz S Opt Express; 2020 Nov; 28(24):36188-36205. PubMed ID: 33379719 [TBL] [Abstract][Full Text] [Related]
17. Centroid extraction from Hartmann-Shack images using swarm clustering approach. Yuwono M; Sepulveda J; Ardi Handojoseno AM Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1446-9. PubMed ID: 23366173 [TBL] [Abstract][Full Text] [Related]
18. Measurement and comparison of the optical performance of an ophthalmic lens based on a Hartmann-Shack wavefront sensor in real viewing conditions. Zhou C; Wang W; Yang K; Chai X; Ren Q Appl Opt; 2008 Dec; 47(34):6434-41. PubMed ID: 19037372 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor. Salmon TO; Thibos LN; Bradley A J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2457-65. PubMed ID: 9729857 [TBL] [Abstract][Full Text] [Related]
20. Repeatability of corneal and ocular aberration measurements and changes in aberrations over one week. Miranda MA; O'Donnell C; Radhakrishnan H Clin Exp Optom; 2009 May; 92(3):253-66. PubMed ID: 19302673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]