These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 19462503)

  • 21. An evaluation of the Bausch & Lomb Zywave aberrometer.
    Dobos MJ; Twa MD; Bullimore MA
    Clin Exp Optom; 2009 May; 92(3):238-45. PubMed ID: 19469012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peripheral aberration measurements: elliptical pupil transformation and variations in horizontal coma across the visual field.
    Hartwig A; Murray IJ; Radhakrishnan H
    Clin Exp Optom; 2011 Sep; 94(5):443-51. PubMed ID: 21668500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aberrations of the human eye in visible and near infrared illumination.
    Llorente L; Diaz-Santana L; Lara-Saucedo D; Marcos S
    Optom Vis Sci; 2003 Jan; 80(1):26-35. PubMed ID: 12553541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measuring higher order optical aberrations of the human eye: techniques and applications.
    Carvalho LA; Castro JC; Carvalho LA
    Braz J Med Biol Res; 2002 Nov; 35(11):1395-406. PubMed ID: 12426641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modal estimation of wavefront phase from slopes over elliptical pupils.
    Wei X; Thibos LN
    Optom Vis Sci; 2010 Oct; 87(10):E767-77. PubMed ID: 20890165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binocular open-view Shack-Hartmann wavefront sensor with consecutive measurements of near triad and spherical aberration.
    Kobayashi M; Nakazawa N; Yamaguchi T; Otaki T; Hirohara Y; Mihashi T
    Appl Opt; 2008 Sep; 47(25):4619-26. PubMed ID: 18758533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. LASIK-induced aberrations: comparing corneal and whole-eye measurements.
    Gobbe M; Reinstein DZ; Archer TJ
    Optom Vis Sci; 2015 Apr; 92(4):447-55. PubMed ID: 25785529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aberrometry: basic science and clinical applications.
    Marcos S
    Bull Soc Belge Ophtalmol; 2006; (302):197-213. PubMed ID: 17265799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The placido wavefront sensor and preliminary measurement on a mechanical eye.
    Carvalho LA; Castro JC
    Optom Vis Sci; 2006 Feb; 83(2):108-18. PubMed ID: 16501413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Higher-order wavefront aberrations in corneal refractive therapy.
    Joslin CE; Wu SM; McMahon TT; Shahidi M
    Optom Vis Sci; 2003 Dec; 80(12):805-11. PubMed ID: 14688543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring eye aberrations with Hartmann-Shack wave-front sensors: should the irradiance distribution across the eye pupil be taken into account?
    Bará S
    J Opt Soc Am A Opt Image Sci Vis; 2003 Dec; 20(12):2237-45. PubMed ID: 14686502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new wavefront sensor with polar symmetry: quantitative comparisons with a Shack-Hartmann wavefront sensor.
    Carvalho LA; Castro J; Chamon W; Schor P
    J Refract Surg; 2006 Nov; 22(9):954-8. PubMed ID: 17124896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wavefront analysis in post-LASIK eyes and its correlation with visual symptoms, refraction, and topography.
    Chalita MR; Chavala S; Xu M; Krueger RR
    Ophthalmology; 2004 Mar; 111(3):447-53. PubMed ID: 15019317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack-Hartmann aberrometer.
    Hong X; Thibos LN; Bradley A; Woods RL; Applegate RA
    Optom Vis Sci; 2003 Jan; 80(1):15-25. PubMed ID: 12553540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repeatability of corneal and ocular aberration measurements and changes in aberrations over one week.
    Miranda MA; O'Donnell C; Radhakrishnan H
    Clin Exp Optom; 2009 May; 92(3):253-66. PubMed ID: 19302673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Age-related changes in corneal and ocular higher-order wavefront aberrations.
    Amano S; Amano Y; Yamagami S; Miyai T; Miyata K; Samejima T; Oshika T
    Am J Ophthalmol; 2004 Jun; 137(6):988-92. PubMed ID: 15183781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
    Thibos LN; Hong X; Bradley A; Cheng X
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2329-48. PubMed ID: 12469728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shifting of the line of sight in keratoconus measured by a hartmann-shack sensor.
    Miháltz K; Kránitz K; Kovács I; Takács A; Németh J; Nagy ZZ
    Ophthalmology; 2010 Jan; 117(1):41-8. PubMed ID: 19896193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of just-noticeable differences for refractive errors and spherical aberration using visual simulation.
    Legras R; Chateau N; Charman WN
    Optom Vis Sci; 2004 Sep; 81(9):718-28. PubMed ID: 15365392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ocular aberrations measured by the Fourier-based WaveScan and Zernike-based LADARWave Hartmann-Shack aberrometers.
    Knapp S; Awwad ST; Ghali C; McCulley JP
    J Refract Surg; 2009 Feb; 25(2):201-9. PubMed ID: 19241771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.