BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19463016)

  • 1. PI(3,4,5)P3 Interactome.
    Catimel B; Yin MX; Schieber C; Condron M; Patsiouras H; Catimel J; Robinson DE; Wong LS; Nice EC; Holmes AB; Burgess AW
    J Proteome Res; 2009 Jul; 8(7):3712-26. PubMed ID: 19463016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The PI(3,5)P2 and PI(4,5)P2 interactomes.
    Catimel B; Schieber C; Condron M; Patsiouras H; Connolly L; Catimel J; Nice EC; Burgess AW; Holmes AB
    J Proteome Res; 2008 Dec; 7(12):5295-313. PubMed ID: 19367725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The PI(3)P interactome from a colon cancer cell.
    Catimel B; Kapp E; Yin MX; Gregory M; Wong LS; Condron M; Church N; Kershaw N; Holmes AB; Burgess AW
    J Proteomics; 2013 Apr; 82():35-51. PubMed ID: 23416715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ions of the interactome: the role of MS in the study of protein interactions in proteomics and structural biology.
    Downard KM
    Proteomics; 2006 Oct; 6(20):5374-84. PubMed ID: 16991196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bait compatibility index: computational bait selection for interaction proteomics experiments.
    Saha S; Kaur P; Ewing RM
    J Proteome Res; 2010 Oct; 9(10):4972-81. PubMed ID: 20731387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of mass spectrometry data in proteomics.
    Matthiesen R; Jensen ON
    Methods Mol Biol; 2008; 453():105-22. PubMed ID: 18712299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted quantitative mass spectrometric identification of differentially expressed proteins between Bax-expressing and deficient colorectal carcinoma cells.
    Wang P; Lo A; Young JB; Song JH; Lai R; Kneteman NM; Hao C; Li L
    J Proteome Res; 2009 Jul; 8(7):3403-14. PubMed ID: 19425606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How do shotgun proteomics algorithms identify proteins?
    Marcotte EM
    Nat Biotechnol; 2007 Jul; 25(7):755-7. PubMed ID: 17621303
    [No Abstract]   [Full Text] [Related]  

  • 9. Construction of functional interaction networks through consensus localization predictions of the human proteome.
    Park S; Yang JS; Jang SK; Kim S
    J Proteome Res; 2009 Jul; 8(7):3367-76. PubMed ID: 19415893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosensor-based micro-affinity purification for the proteomic analysis of protein complexes.
    Catimel B; Rothacker J; Catimel J; Faux M; Ross J; Connolly L; Clippingdale A; Burgess AW; Nice E
    J Proteome Res; 2005; 4(5):1646-56. PubMed ID: 16212417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landscape of the hnRNP K protein-protein interactome.
    Mikula M; Dzwonek A; Karczmarski J; Rubel T; Dadlez M; Wyrwicz LS; Bomsztyk K; Ostrowski J
    Proteomics; 2006 Apr; 6(8):2395-406. PubMed ID: 16518874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteogenomic analysis of human colon carcinoma cell lines LIM1215, LIM1899, and LIM2405.
    Fanayan S; Smith JT; Lee LY; Yan F; Snyder M; Hancock WS; Nice E
    J Proteome Res; 2013 Apr; 12(4):1732-42. PubMed ID: 23458625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionization properties of phosphatidylinositol polyphosphates in mixed model membranes.
    Kooijman EE; King KE; Gangoda M; Gericke A
    Biochemistry; 2009 Oct; 48(40):9360-71. PubMed ID: 19725516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating high-throughput proteomics experiments into structural biology pipelines: identification of the low-hanging fruits.
    Pache RA; Aloy P
    Proteomics; 2008 May; 8(10):1959-64. PubMed ID: 18491310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of differentially expressed proteins in triple-negative breast carcinomas using DIGE and mass spectrometry.
    Schulz DM; Böllner C; Thomas G; Atkinson M; Esposito I; Höfler H; Aubele M
    J Proteome Res; 2009 Jul; 8(7):3430-8. PubMed ID: 19485423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential isolation and identification of PI(3)P and PI(3,5)P2 binding proteins from Arabidopsis thaliana using an agarose-phosphatidylinositol-phosphate affinity chromatography.
    Oxley D; Ktistakis N; Farmaki T
    J Proteomics; 2013 Oct; 91():580-94. PubMed ID: 24007659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protein microscope: incorporating mass spectrometry into cell biology.
    Bell AW; Nilsson T; Kearney RE; Bergeron JJ
    Nat Methods; 2007 Oct; 4(10):783-4. PubMed ID: 17901866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reference map for liquid chromatography-mass spectrometry-based quantitative proteomics.
    Kim YJ; Feild B; Fitzhugh W; Heidbrink JL; Duff JW; Heil J; Ruben SM; He T
    Anal Biochem; 2009 Oct; 393(2):155-62. PubMed ID: 19538932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Binding of phosphatidylinositol-3,4,5-triphosphate to 45-kDa sec14-like protein from the rat olfactory epithelium in liposomes].
    Il'nitskaia EV; Shamborant OG; Radchenko VV; Shuvaeva TM; Lipkin VM
    Bioorg Khim; 2006; 32(3):335-6. PubMed ID: 16808177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics researchers solidifying principles for data sharing.
    Eastman Q
    J Proteome Res; 2009 Jul; 8(7):3220. PubMed ID: 19575531
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.