BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19463037)

  • 1. Cryptosporidium parvum DNA replication in cell-free culture.
    Zhang L; Sheoran AS; Widmer G
    J Parasitol; 2009 Oct; 95(5):1239-42. PubMed ID: 19463037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of Cryptosporidium growth in in vitro culture--the impact of parasite density on the success of infection.
    Paziewska-Harris A; Singer M; Schoone G; Schallig H
    Parasitol Res; 2016 Jan; 115(1):329-37. PubMed ID: 26435485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology and in vitro infectivity of sporozoites of Cryptosporidium parvum.
    Petry F; Kneib I; Harris JR
    J Parasitol; 2009 Oct; 95(5):1243-6. PubMed ID: 19492897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-Term Storage of Cryptosporidium parvum for In Vitro Culture.
    Paziewska-Harris A; Schoone G; Schallig HDFH
    J Parasitol; 2018 Feb; 104(1):96-100. PubMed ID: 29095102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryptosporidium parvum development in the BS-C-1 cell line.
    Deng MQ; Cliver DO
    J Parasitol; 1998 Feb; 84(1):8-15. PubMed ID: 9488330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An assay combining cell culture with reverse transcriptase PCR to detect and determine the infectivity of waterborne Cryptosporidium parvum.
    Rochelle PA; Ferguson DM; Handojo TJ; De Leon R; Stewart MH; Wolfe RL
    Appl Environ Microbiol; 1997 May; 63(5):2029-37. PubMed ID: 9143132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a TaqMan quantitative PCR assay specific for Cryptosporidium parvum.
    Fontaine M; Guillot E
    FEMS Microbiol Lett; 2002 Aug; 214(1):13-7. PubMed ID: 12204366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete development and long-term maintenance of Cryptosporidium parvum human and cattle genotypes in cell culture.
    Hijjawi NS; Meloni BP; Morgan UM; Thompson RC
    Int J Parasitol; 2001 Aug; 31(10):1048-55. PubMed ID: 11429168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis of pig intestinal cell monolayers infected with Cryptosporidium parvum asexual stages.
    Mirhashemi ME; Noubary F; Chapman-Bonofiglio S; Tzipori S; Huggins GS; Widmer G
    Parasit Vectors; 2018 Mar; 11(1):176. PubMed ID: 29530089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential infection of dividing cells by Cryptosporidium parvum.
    Widmer G; Yang YL; Bonilla R; Tanriverdi S; Ciociola KM
    Parasitology; 2006 Aug; 133(Pt 2):131-8. PubMed ID: 16623967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro Culture of Cryptosporidium parvum Using Stem Cell-Derived Intestinal Epithelial Monolayers.
    Wilke G; Wang Y; Ravindran S; Stappenbeck T; Witola WH; Sibley LD
    Methods Mol Biol; 2020; 2052():351-372. PubMed ID: 31452172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of a Cryptosporidium parvum-specific cDNA clone and detection of parasite DNA in mucosal scrapings of infected mice.
    Petry F; Shirley MW; Miles MA; McDonald V
    Mol Biochem Parasitol; 1998 Sep; 95(1):21-31. PubMed ID: 9763286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations of the relationship between use of in vitro cell culture-quantitative PCR and a mouse-based bioassay for evaluating critical factors affecting the disinfection performance of pulsed UV light for treating Cryptosporidium parvum oocysts in saline.
    Garvey M; Farrell H; Cormican M; Rowan N
    J Microbiol Methods; 2010 Mar; 80(3):267-73. PubMed ID: 20096310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts.
    Hønsvall BK; Robertson LJ
    Exp Parasitol; 2017 Jan; 172():61-67. PubMed ID: 27998735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Cryptosporidium parvum Oocysts on Fresh Produce Using DNA Aptamers.
    Iqbal A; Labib M; Muharemagic D; Sattar S; Dixon BR; Berezovski MV
    PLoS One; 2015; 10(9):e0137455. PubMed ID: 26334529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and discrimination of Cryptosporidium parvum and C. hominis in water samples by immunomagnetic separation-PCR.
    Ochiai Y; Takada C; Hosaka M
    Appl Environ Microbiol; 2005 Feb; 71(2):898-903. PubMed ID: 15691946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoclonal Antibodies to Intracellular Stages of Cryptosporidium parvum Define Life Cycle Progression
    Wilke G; Ravindran S; Funkhouser-Jones L; Barks J; Wang Q; VanDussen KL; Stappenbeck TS; Kuhlenschmidt TB; Kuhlenschmidt MS; Sibley LD
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29848759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An immunomagnetic separation-real-time PCR method for quantification of Cryptosporidium parvum in water samples.
    Fontaine M; Guillot E
    J Microbiol Methods; 2003 Jul; 54(1):29-36. PubMed ID: 12732419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of Cryptosporidium parvum isolates by a simplified randomly amplified polymorphic DNA technique.
    Deng MQ; Cliver DO
    Appl Environ Microbiol; 1998 May; 64(5):1954-7. PubMed ID: 9572980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplication of the waterborne pathogen Cryptosporidium parvum in an aquatic biofilm system.
    Koh W; Clode PL; Monis P; Thompson RC
    Parasit Vectors; 2013 Sep; 6():270. PubMed ID: 24330483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.