These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 1946324)
1. Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Perczel A; Hollósi M; Tusnády G; Fasman GD Protein Eng; 1991 Aug; 4(6):669-79. PubMed ID: 1946324 [TBL] [Abstract][Full Text] [Related]
2. Deconvolution of the circular dichroism spectra of proteins: the circular dichroism spectra of the antiparallel beta-sheet in proteins. Perczel A; Park K; Fasman GD Proteins; 1992 May; 13(1):57-69. PubMed ID: 1594578 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: a practical guide. Perczel A; Park K; Fasman GD Anal Biochem; 1992 May; 203(1):83-93. PubMed ID: 1524219 [TBL] [Abstract][Full Text] [Related]
4. Differentiation between transmembrane helices and peripheral helices by the deconvolution of circular dichroism spectra of membrane proteins. Park K; Perczel A; Fasman GD Protein Sci; 1992 Aug; 1(8):1032-49. PubMed ID: 1338977 [TBL] [Abstract][Full Text] [Related]
5. The use of spectral decomposition via the convex constraint algorithm in interpreting the CD-observed unfolding transitions of coiled coils. Holtzer ME; Holtzer A Biopolymers; 1995 Sep; 36(3):365-79. PubMed ID: 7669920 [TBL] [Abstract][Full Text] [Related]
6. A CD determination of the alpha-helix contents of the coat proteins of four filamentous bacteriophages: fd, IKe, Pf1, and Pf3. Clack BA; Gray DM Biopolymers; 1989 Nov; 28(11):1861-73. PubMed ID: 2597737 [TBL] [Abstract][Full Text] [Related]
7. Phospholipids stabilize the secondary structure of the sodium-coupled branched-chain amino acid carrier of Pseudomonas aeruginosa. Uratani Y; Kobayashi M; Yokoyama Y; Maeda T; Mitaku S; Hoshino T Biochim Biophys Acta; 1999 Nov; 1435(1-2):71-83. PubMed ID: 10561539 [TBL] [Abstract][Full Text] [Related]
8. Analyzing protein circular dichroism spectra for accurate secondary structures. Johnson WC Proteins; 1999 May; 35(3):307-12. PubMed ID: 10328265 [TBL] [Abstract][Full Text] [Related]
9. [Determination of secondary structure of globular proteins using circular dichroism spectra]. Shubin VV; Khazin ML; Efimovskaia TV Mol Biol (Mosk); 1990; 24(1):189-201. PubMed ID: 2348821 [TBL] [Abstract][Full Text] [Related]
10. Estimation of globular protein secondary structure from circular dichroism. Provencher SW; Glöckner J Biochemistry; 1981 Jan; 20(1):33-7. PubMed ID: 7470476 [TBL] [Abstract][Full Text] [Related]
11. Prediction of protein secondary structure from circular dichroism spectra: an attempt to solve the problem of the best-fitting reference protein subsets. Dalmas B; Bannister WH Anal Biochem; 1995 Feb; 225(1):39-48. PubMed ID: 7778785 [TBL] [Abstract][Full Text] [Related]
12. SESCA: Predicting Circular Dichroism Spectra from Protein Molecular Structures. Nagy G; Igaev M; Jones NC; Hoffmann SV; Grubmüller H J Chem Theory Comput; 2019 Sep; 15(9):5087-5102. PubMed ID: 31402660 [TBL] [Abstract][Full Text] [Related]
18. X-ray structure and circular dichroism of pure rotamers of bis[guanosine-5'-monophosphate(-1)](N,N,N',N'-tetramethylcyclohexyl-1,2-diamine)platinum(II) complexes that have R,R and S,S configurations at the asymmetric diamine. Benedetti M; Tamasi G; Cini R; Natile G Chemistry; 2003 Dec; 9(24):6122-32. PubMed ID: 14679524 [TBL] [Abstract][Full Text] [Related]
19. Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy. Matsuo K; Yonehara R; Gekko K J Biochem; 2005 Jul; 138(1):79-88. PubMed ID: 16046451 [TBL] [Abstract][Full Text] [Related]
20. The inherent flexibility of peptides and protein fragments quantitized by CD in conjunction with CCA+. Jákli I; Perczel A J Pept Sci; 2009 Nov; 15(11):738-52. PubMed ID: 19768692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]