These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 19463828)
41. Construction and preliminary analysis of a normalized cDNA library from Locusta migratoria manilensis topically infected with Metarhizium anisopliae var. acridum. Wang J; Xia Y J Insect Physiol; 2010 Aug; 56(8):998-1002. PubMed ID: 20470782 [TBL] [Abstract][Full Text] [Related]
42. Antifungal activity of the termite alkaloid norharmane against the mycelial growth of Metarhizium anisopliae and Aspergillus nomius. Chouvenc T; Su NY; Elliott MI J Invertebr Pathol; 2008 Nov; 99(3):345-7. PubMed ID: 18703070 [TBL] [Abstract][Full Text] [Related]
44. Isolation and characterization of Metarhizium anisopliae TK29 and its mycoinsecticide effects against subterranean termite Coptotermes formosanus. Keppanan R; Sivaperumal S; Ramos Aguila LC; Hussain M; Bamisile BS; Dash CK; Wang L Microb Pathog; 2018 Oct; 123():52-59. PubMed ID: 29959038 [TBL] [Abstract][Full Text] [Related]
45. Development of a simple and rapid Agrobacterium tumefaciens-mediated transformation system for the entomopathogenic fungus Metarhizium anisopliae var. acridum. Duarte RT; Staats CC; Fungaro MH; Schrank A; Vainsten MH; Furlaneto-Maia L; Nakamura CV; de Souza W; Furlaneto MC Lett Appl Microbiol; 2007 Mar; 44(3):248-54. PubMed ID: 17309500 [TBL] [Abstract][Full Text] [Related]
46. African water storage pots for the delivery of the entomopathogenic fungus Metarhizium anisopliae to the malaria vectors Anopheles gambiae s.s. and Anopheles funestus. Farenhorst M; Farina D; Scholte EJ; Takken W; Hunt RH; Coetzee M; Knols BG Am J Trop Med Hyg; 2008 Jun; 78(6):910-6. PubMed ID: 18541768 [TBL] [Abstract][Full Text] [Related]
47. Involvement of a catalase gene in lignin catalysis and immune defense against pathogenic fungus in Coptotermes formosanus: a potential new target for termite control. Zeng W; Shen D; Wu W; Zhang S; Li Z; Zhang D Pest Manag Sci; 2024 Jul; 80(7):3258-3268. PubMed ID: 38358092 [TBL] [Abstract][Full Text] [Related]
48. Morphological and quantitative aspects of nodule formation in hemolymph of the blowfly Chrysomya megacephala (Fabricius, 1794). Faraldo AC; Gregório EA; Lello E Exp Parasitol; 2008 Mar; 118(3):372-7. PubMed ID: 18086470 [TBL] [Abstract][Full Text] [Related]
49. Virulence of Metarhizium anisopliae to eggs and immature stages of Stomoxys calcitrans. Moraes AP; Angelo Ida C; Fernandes EK; Bittencourt VR; Bittencourt AJ Ann N Y Acad Sci; 2008 Dec; 1149():384-7. PubMed ID: 19120256 [TBL] [Abstract][Full Text] [Related]
50. Mechanism of Metarhizium rileyi evading cellular immune responses in Helicoverpa armigera. Li L; Zhong K; Wang JL; Liu XS Arch Insect Biochem Physiol; 2021 Mar; 106(3):e21769. PubMed ID: 33590536 [TBL] [Abstract][Full Text] [Related]
51. Repellent effects of isoborneol on subterranean termites (Isoptera: Rhinotermitidae) in soils of different composition. Bläske VU; Hertel H; Forschler BT J Econ Entomol; 2003 Aug; 96(4):1267-74. PubMed ID: 14503600 [TBL] [Abstract][Full Text] [Related]
52. Hemolymph protein profiles of subterranean termite Reticulitermes flavipes challenged with methicillin resistant Staphylococcus aureus or Pseudomonas aeruginosa. Zeng Y; Hu XP; Cao G; Suh SJ Sci Rep; 2018 Sep; 8(1):13251. PubMed ID: 30185933 [TBL] [Abstract][Full Text] [Related]
53. Characterization of termite lipophorin and its involvement in hydrocarbon transport. Fan Y; Schal C; Vargo EL; Bagnères AG J Insect Physiol; 2004 Jul; 50(7):609-20. PubMed ID: 15234621 [TBL] [Abstract][Full Text] [Related]
54. Immune-related transcriptome of Coptotermes formosanus Shiraki workers: the defense mechanism. Hussain A; Li YF; Cheng Y; Liu Y; Chen CC; Wen SY PLoS One; 2013; 8(7):e69543. PubMed ID: 23874972 [TBL] [Abstract][Full Text] [Related]
55. Interactions of Metarhizium anisoplae and tree-based mulches in repellence and mycoses against Coptotermes formosanus (Isoptera: Rhinotermitidae). Sun JZ; Fuxa JR; Richter A; Ring D Environ Entomol; 2008 Jun; 37(3):755-63. PubMed ID: 18559182 [TBL] [Abstract][Full Text] [Related]
56. Adaptive evolution in subterranean termite antifungal peptides. Bulmer MS; Lay F; Hamilton C Insect Mol Biol; 2010 Oct; 19(5):669-74. PubMed ID: 20561089 [TBL] [Abstract][Full Text] [Related]
57. Comparison of volatile blends and gene sequences of two isolates of Metarhizium anisopliae of different virulence and repellency toward the termite Macrotermes michaelseni. Mburu DM; Ndung'u MW; Maniania NK; Hassanali A J Exp Biol; 2011 Mar; 214(Pt 6):956-62. PubMed ID: 21346123 [TBL] [Abstract][Full Text] [Related]
58. Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fang W; Pava-ripoll M; Wang S; St Leger R Fungal Genet Biol; 2009 Mar; 46(3):277-85. PubMed ID: 19124083 [TBL] [Abstract][Full Text] [Related]
59. Spore persistence and likelihood of aeroallergenicity of entomopathogenic fungi used for mosquito control. Darbro JM; Thomas MB Am J Trop Med Hyg; 2009 Jun; 80(6):992-7. PubMed ID: 19478264 [TBL] [Abstract][Full Text] [Related]
60. Experimental verification and molecular basis of active immunization against fungal pathogens in termites. Liu L; Li G; Sun P; Lei C; Huang Q Sci Rep; 2015 Oct; 5():15106. PubMed ID: 26458743 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]