BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 19463886)

  • 1. Cis-acting resistance peptides reveal dual ribosome inhibitory action of the macrolide josamycin.
    Lovmar M; Vimberg V; Lukk E; Nilsson K; Tenson T; Ehrenberg M
    Biochimie; 2009 Aug; 91(8):989-95. PubMed ID: 19463886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of macrolide action: the josamycin and erythromycin cases.
    Lovmar M; Tenson T; Ehrenberg M
    J Biol Chem; 2004 Dec; 279(51):53506-15. PubMed ID: 15385552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition.
    Starosta AL; Karpenko VV; Shishkina AV; Mikolajka A; Sumbatyan NV; Schluenzen F; Korshunova GA; Bogdanov AA; Wilson DN
    Chem Biol; 2010 May; 17(5):504-14. PubMed ID: 20534348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism of drug-dependent ribosome stalling.
    Vazquez-Laslop N; Thum C; Mankin AS
    Mol Cell; 2008 Apr; 30(2):190-202. PubMed ID: 18439898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmed drug-dependent ribosome stalling.
    Ramu H; Mankin A; Vazquez-Laslop N
    Mol Microbiol; 2009 Feb; 71(4):811-24. PubMed ID: 19170872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide-mediated macrolide resistance reveals possible specific interactions in the nascent peptide exit tunnel.
    Vimberg V; Xiong L; Bailey M; Tenson T; Mankin A
    Mol Microbiol; 2004 Oct; 54(2):376-85. PubMed ID: 15469510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Codon-specific and general inhibition of protein synthesis by the tRNA-sequestering minigenes.
    Delgado-Olivares L; Zamora-Romo E; Guarneros G; Hernandez-Sanchez J
    Biochimie; 2006 Jul; 88(7):793-800. PubMed ID: 16488066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shutdown in protein synthesis due to the expression of mini-genes in bacteria.
    Dinçbas V; Heurgué-Hamard V; Buckingham RH; Karimi R; Ehrenberg M
    J Mol Biol; 1999 Aug; 291(4):745-59. PubMed ID: 10452886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Measurements of Erythromycin's Effect on Protein Synthesis Kinetics in Living Bacterial Cells.
    Seefeldt AC; Aguirre Rivera J; Johansson M
    J Mol Biol; 2021 May; 433(10):166942. PubMed ID: 33744313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation.
    Peske F; Savelsbergh A; Katunin VI; Rodnina MV; Wintermeyer W
    J Mol Biol; 2004 Nov; 343(5):1183-94. PubMed ID: 15491605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanism of action of 9-O-arylalkyloxime derivatives of 6-O-mycaminosyltylonolide, a new class of 16-membered macrolide antibiotics.
    Karahalios P; Kalpaxis DL; Fu H; Katz L; Wilson DN; Dinos GP
    Mol Pharmacol; 2006 Oct; 70(4):1271-80. PubMed ID: 16873579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center.
    Ramu H; Vázquez-Laslop N; Klepacki D; Dai Q; Piccirilli J; Micura R; Mankin AS
    Mol Cell; 2011 Feb; 41(3):321-30. PubMed ID: 21292164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalysis of ribosomal translocation by sparsomycin.
    Fredrick K; Noller HF
    Science; 2003 May; 300(5622):1159-62. PubMed ID: 12750524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosomal crystallography: peptide bond formation and its inhibition.
    Bashan A; Zarivach R; Schluenzen F; Agmon I; Harms J; Auerbach T; Baram D; Berisio R; Bartels H; Hansen HA; Fucini P; Wilson D; Peretz M; Kessler M; Yonath A
    Biopolymers; 2003 Sep; 70(1):19-41. PubMed ID: 12925991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome.
    Tenson T; Lovmar M; Ehrenberg M
    J Mol Biol; 2003 Jul; 330(5):1005-14. PubMed ID: 12860123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular mechanism of peptide-mediated erythromycin resistance.
    Lovmar M; Nilsson K; Vimberg V; Tenson T; Nervall M; Ehrenberg M
    J Biol Chem; 2006 Mar; 281(10):6742-50. PubMed ID: 16410246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel.
    Kannan K; Vázquez-Laslop N; Mankin AS
    Cell; 2012 Oct; 151(3):508-20. PubMed ID: 23101624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the structural basis of peptide-bond formation and antibiotic resistance from atomic structures of the large ribosomal subunit.
    Steitz TA
    FEBS Lett; 2005 Feb; 579(4):955-8. PubMed ID: 15680981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of P-Site tRNA and antibiotics on ribosome mediated protein folding: studies using the Escherichia coli ribosome.
    Mondal S; Pathak BK; Ray S; Barat C
    PLoS One; 2014; 9(7):e101293. PubMed ID: 25000563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.