BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19463974)

  • 1. Designing porosity and topography of poly(1,3-trimethylene carbonate) scaffolds.
    Papenburg BJ; Schüller-Ravoo S; Bolhuis-Versteeg LA; Hartsuiker L; Grijpma DW; Feijen J; Wessling M; Stamatialis D
    Acta Biomater; 2009 Nov; 5(9):3281-94. PubMed ID: 19463974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F; Li Z; Lannutti JL; Wagner WR; Guan J
    Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering.
    Song Y; Kamphuis MM; Zhang Z; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW
    Acta Biomater; 2010 Apr; 6(4):1269-77. PubMed ID: 19818420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Vermes I; Poot AA; Feijen J; Grijpma DW
    J Biomed Mater Res A; 2010 Nov; 95(2):440-6. PubMed ID: 20648539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins.
    Schüller-Ravoo S; Teixeira SM; Feijen J; Grijpma DW; Poot AA
    Macromol Biosci; 2013 Dec; 13(12):1711-9. PubMed ID: 24214105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response.
    Koegler WS; Griffith LG
    Biomaterials; 2004 Jun; 25(14):2819-30. PubMed ID: 14962560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds.
    Bat E; Kothman BH; Higuera GA; van Blitterswijk CA; Feijen J; Grijpma DW
    Biomaterials; 2010 Nov; 31(33):8696-705. PubMed ID: 20739060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering.
    Murphy CM; Haugh MG; O'Brien FJ
    Biomaterials; 2010 Jan; 31(3):461-6. PubMed ID: 19819008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of flexible and elastic poly(trimethylene carbonate) structures by stereolithography.
    Schüller-Ravoo S; Feijen J; Grijpma DW
    Macromol Biosci; 2011 Dec; 11(12):1662-71. PubMed ID: 22006829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW
    Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K; Mann B; Wicker R
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable nanocomposite hydrogel structures with enhanced mechanical properties prepared by photo-crosslinking solutions of poly(trimethylene carbonate)-poly(ethylene glycol)-poly(trimethylene carbonate) macromonomers and nanoclay particles.
    Sharifi S; Blanquer SB; van Kooten TG; Grijpma DW
    Acta Biomater; 2012 Dec; 8(12):4233-43. PubMed ID: 22995403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of tubular poly(trimethylene carbonate) tissue engineering scaffolds in a circulating pulsatile flow system.
    Song Y; Wennink JW; Poot AA; Vermes I; Feijen J; Grijpma DW
    Int J Artif Organs; 2011 Feb; 34(2):161-71. PubMed ID: 21374572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of porous tubular silk fibroin scaffolds.
    Min S; Gao X; Liu L; Tian L; Zhu L; Zhang H; Yao J
    J Biomater Sci Polym Ed; 2009; 20(13):1961-74. PubMed ID: 19793450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process.
    Ahn S; Lee S; Cho Y; Chun W; Kim G
    Bioprocess Biosyst Eng; 2011 Sep; 34(7):903-11. PubMed ID: 21472408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-engineered polyethylene oxide/chitosan scaffolds as potential substitutes for articular cartilage.
    Kuo YC; Hsu YR
    J Biomed Mater Res A; 2009 Oct; 91(1):277-87. PubMed ID: 18980201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of poly (trimethylene carbonate)/reduced graphene oxide-graft-poly (trimethylene carbonate) composite scaffolds for nerve regeneration.
    Guo Z; Liang J; Poot AA; Grijpma DW; Chen H
    Biomed Mater; 2019 Feb; 14(2):024104. PubMed ID: 30665200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.