These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 19463974)
1. Designing porosity and topography of poly(1,3-trimethylene carbonate) scaffolds. Papenburg BJ; Schüller-Ravoo S; Bolhuis-Versteeg LA; Hartsuiker L; Grijpma DW; Feijen J; Wessling M; Stamatialis D Acta Biomater; 2009 Nov; 5(9):3281-94. PubMed ID: 19463974 [TBL] [Abstract][Full Text] [Related]
2. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Wang F; Li Z; Lannutti JL; Wagner WR; Guan J Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136 [TBL] [Abstract][Full Text] [Related]
3. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering. Song Y; Kamphuis MM; Zhang Z; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW Acta Biomater; 2010 Apr; 6(4):1269-77. PubMed ID: 19818420 [TBL] [Abstract][Full Text] [Related]
4. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Song Y; Wennink JW; Kamphuis MM; Vermes I; Poot AA; Feijen J; Grijpma DW J Biomed Mater Res A; 2010 Nov; 95(2):440-6. PubMed ID: 20648539 [TBL] [Abstract][Full Text] [Related]
5. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S; Lee GY; Wong JY; Desai TA Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195 [TBL] [Abstract][Full Text] [Related]
6. Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins. Schüller-Ravoo S; Teixeira SM; Feijen J; Grijpma DW; Poot AA Macromol Biosci; 2013 Dec; 13(12):1711-9. PubMed ID: 24214105 [TBL] [Abstract][Full Text] [Related]
7. Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response. Koegler WS; Griffith LG Biomaterials; 2004 Jun; 25(14):2819-30. PubMed ID: 14962560 [TBL] [Abstract][Full Text] [Related]
8. Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds. Bat E; Kothman BH; Higuera GA; van Blitterswijk CA; Feijen J; Grijpma DW Biomaterials; 2010 Nov; 31(33):8696-705. PubMed ID: 20739060 [TBL] [Abstract][Full Text] [Related]
9. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Murphy CM; Haugh MG; O'Brien FJ Biomaterials; 2010 Jan; 31(3):461-6. PubMed ID: 19819008 [TBL] [Abstract][Full Text] [Related]
10. Preparation of flexible and elastic poly(trimethylene carbonate) structures by stereolithography. Schüller-Ravoo S; Feijen J; Grijpma DW Macromol Biosci; 2011 Dec; 11(12):1662-71. PubMed ID: 22006829 [TBL] [Abstract][Full Text] [Related]
11. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005 [TBL] [Abstract][Full Text] [Related]
12. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Arcaute K; Mann B; Wicker R Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602 [TBL] [Abstract][Full Text] [Related]
13. Biodegradable nanocomposite hydrogel structures with enhanced mechanical properties prepared by photo-crosslinking solutions of poly(trimethylene carbonate)-poly(ethylene glycol)-poly(trimethylene carbonate) macromonomers and nanoclay particles. Sharifi S; Blanquer SB; van Kooten TG; Grijpma DW Acta Biomater; 2012 Dec; 8(12):4233-43. PubMed ID: 22995403 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of tubular poly(trimethylene carbonate) tissue engineering scaffolds in a circulating pulsatile flow system. Song Y; Wennink JW; Poot AA; Vermes I; Feijen J; Grijpma DW Int J Artif Organs; 2011 Feb; 34(2):161-71. PubMed ID: 21374572 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and characterization of porous tubular silk fibroin scaffolds. Min S; Gao X; Liu L; Tian L; Zhu L; Zhang H; Yao J J Biomater Sci Polym Ed; 2009; 20(13):1961-74. PubMed ID: 19793450 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process. Ahn S; Lee S; Cho Y; Chun W; Kim G Bioprocess Biosyst Eng; 2011 Sep; 34(7):903-11. PubMed ID: 21472408 [TBL] [Abstract][Full Text] [Related]
17. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Akay G; Birch MA; Bokhari MA Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889 [TBL] [Abstract][Full Text] [Related]
18. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905 [TBL] [Abstract][Full Text] [Related]
19. Tissue-engineered polyethylene oxide/chitosan scaffolds as potential substitutes for articular cartilage. Kuo YC; Hsu YR J Biomed Mater Res A; 2009 Oct; 91(1):277-87. PubMed ID: 18980201 [TBL] [Abstract][Full Text] [Related]