These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19464014)

  • 21. Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress.
    Krishnan R; Park S; Eckstein F; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):569-77. PubMed ID: 14618915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carotid plaque elasticity estimation using ultrasound elastography, MRI, and inverse FEA - A numerical feasibility study.
    Nieuwstadt HA; Fekkes S; Hansen HH; de Korte CL; van der Lugt A; Wentzel JJ; van der Steen AF; Gijsen FJ
    Med Eng Phys; 2015 Aug; 37(8):801-7. PubMed ID: 26130603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data.
    Fu YB; Chui CK
    J Biomech; 2014 Jul; 47(10):2430-5. PubMed ID: 24811044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties.
    Johnson KL; Trim MW; Francis DK; Whittington WR; Miller JA; Bennett CE; Horstemeyer MF
    Acta Biomater; 2017 Jan; 48():300-308. PubMed ID: 27793720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Normalized wall index specific and MRI-based stress analysis of atherosclerotic carotid plaques: a study comparing acutely symptomatic and asymptomatic patients.
    Zhu C; Teng Z; Sadat U; Young VE; Graves MJ; Li ZY; Gillard JH
    Circ J; 2010 Nov; 74(11):2360-4. PubMed ID: 20834184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example.
    Kiousis DE; Rubinigg SF; Auer M; Holzapfel GA
    J Biomech Eng; 2009 Dec; 131(12):121002. PubMed ID: 20524725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Static circumferential tangential modulus of human atherosclerotic tissue.
    Loree HM; Grodzinsky AJ; Park SY; Gibson LJ; Lee RT
    J Biomech; 1994 Feb; 27(2):195-204. PubMed ID: 8132688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of carotid plaque tissue properties using an experimental-numerical approach.
    Heiland VM; Forsell C; Roy J; Hedin U; Gasser TC
    J Mech Behav Biomed Mater; 2013 Nov; 27():226-38. PubMed ID: 23790614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carotid arterial plaque stress analysis using fluid-structure interactive simulation based on in-vivo magnetic resonance images of four patients.
    Gao H; Long Q; Graves M; Gillard JH; Li ZY
    J Biomech; 2009 Jul; 42(10):1416-1423. PubMed ID: 19464011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical characterisation of human and porcine scalp tissue at dynamic strain rates.
    Trotta A; Ní Annaidh A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103381. PubMed ID: 31430703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biphasic analysis of rat brain slices under creep indentation shows nonlinear tension-compression behavior.
    Wang R; Sarntinoranont M
    J Mech Behav Biomed Mater; 2019 Jan; 89():1-8. PubMed ID: 30236976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shear wave elastography assessment of carotid plaque stiffness: in vitro reproducibility study.
    Ramnarine KV; Garrard JW; Dexter K; Nduwayo S; Panerai RB; Robinson TG
    Ultrasound Med Biol; 2014 Jan; 40(1):200-9. PubMed ID: 24210861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs.
    Nikkhoo M; Hsu YC; Haghpanahi M; Parnianpour M; Wang JL
    Proc Inst Mech Eng H; 2013 Jun; 227(6):672-82. PubMed ID: 23636748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study.
    Julkunen P; Korhonen RK; Herzog W; Jurvelin JS
    Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.