BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1946420)

  • 1. Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA.
    Rousset F; PĂ©landakis M; Solignac M
    Proc Natl Acad Sci U S A; 1991 Nov; 88(22):10032-6. PubMed ID: 1946420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is there a special function for U.G basepairs in ribosomal RNA?
    van Knippenberg PH; Formenoy LJ; Heus HA
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):14-7. PubMed ID: 2207138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster.
    Hancock JM; Tautz D; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):393-414. PubMed ID: 3136295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High apparent rate of simultaneous compensatory base-pair substitutions in ribosomal RNA.
    Tillier ER; Collins RA
    Genetics; 1998 Apr; 148(4):1993-2002. PubMed ID: 9560412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensatory neutral mutations and the evolution of RNA.
    Higgs PG
    Genetica; 1998; 102-103(1-6):91-101. PubMed ID: 9720274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G.U base pairing motifs in ribosomal RNA.
    Gautheret D; Konings D; Gutell RR
    RNA; 1995 Oct; 1(8):807-14. PubMed ID: 7493326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stacking of Crick Wobble pair and Watson-Crick pair: stability rules of G-U pairs at ends of helical stems in tRNAs and the relation to codon-anticodon Wobble interaction.
    Mizuno H; Sundaralingam M
    Nucleic Acids Res; 1978 Nov; 5(11):4451-61. PubMed ID: 724522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of pairing constraints identifies a 9 base-pair core within box C/D snoRNA-rRNA duplexes.
    Chen CL; Perasso R; Qu LH; Amar L
    J Mol Biol; 2007 Jun; 369(3):771-83. PubMed ID: 17459411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Base pairing constraints drive structural epistasis in ribosomal RNA sequences.
    Dutheil JY; Jossinet F; Westhof E
    Mol Biol Evol; 2010 Aug; 27(8):1868-76. PubMed ID: 20211929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G.U pairs: one hydrogen bond for each G.U pair in r(GGCGUGCC)(2) and two for each G.U pair in r(GAGUGCUC)(2).
    Chen X; McDowell JA; Kierzek R; Krugh TR; Turner DH
    Biochemistry; 2000 Aug; 39(30):8970-82. PubMed ID: 10913310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization.
    Strobel SA; Cech TR
    Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin and evolution of variable-region helices in V4 and V7 of the small-subunit ribosomal RNA of branchiopod crustaceans.
    Crease TJ; Taylor DJ
    Mol Biol Evol; 1998 Nov; 15(11):1430-46. PubMed ID: 12572607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 'Compensatory slippage' in the evolution of ribosomal RNA genes.
    Hancock JM; Dover GA
    Nucleic Acids Res; 1990 Oct; 18(20):5949-54. PubMed ID: 2235480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rate and mode differences between nuclear and mitochondrial small-subunit rRNA genes in mushrooms.
    Bruns TD; Szaro TM
    Mol Biol Evol; 1992 Sep; 9(5):836-55. PubMed ID: 1382179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments.
    Ruiz Linares A; Hancock JM; Dover GA
    J Mol Biol; 1991 Jun; 219(3):381-90. PubMed ID: 1904940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary structure of mitochondrial 12S rRNA among fish and its phylogenetic applications.
    Wang HY; Lee SC
    Mol Biol Evol; 2002 Feb; 19(2):138-48. PubMed ID: 11801742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA tertiary structure of the HIV RRE domain II containing non-Watson-Crick base pairs GG and GA: molecular modeling studies.
    Le SY; Pattabiraman N; Maizel JV
    Nucleic Acids Res; 1994 Sep; 22(19):3966-76. PubMed ID: 7937119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete sequences of the rRNA genes of Drosophila melanogaster.
    Tautz D; Hancock JM; Webb DA; Tautz C; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):366-76. PubMed ID: 3136294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs.
    Holbrook SR; Cheong C; Tinoco I; Kim SH
    Nature; 1991 Oct; 353(6344):579-81. PubMed ID: 1922368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural constraints in expansion segments from a midge 26S rDNA.
    Gorab E; Garcia de Lacoba M; Botella LM
    J Mol Evol; 1995 Dec; 41(6):1016-21. PubMed ID: 8587100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.