BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1946420)

  • 21. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs.
    Lee JC; Gutell RR
    J Mol Biol; 2004 Dec; 344(5):1225-49. PubMed ID: 15561141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bases defining an ammonium and magnesium ion-dependent tertiary structure within the large subunit ribosomal RNA.
    Lu M; Draper DE
    J Mol Biol; 1994 Dec; 244(5):572-85. PubMed ID: 7527467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adenine·cytosine substitutions are an alternative pathway of compensatory mutation in angiosperm ITS2.
    Zhang X; Cao Y; Zhang W; Simmons MP
    RNA; 2020 Feb; 26(2):209-217. PubMed ID: 31748405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model of compensatory molecular evolution involving multiple sites in RNA molecules.
    Kusumi J; Ichinose M; Takefu M; Piskol R; Stephan W; Iizuka M
    J Theor Biol; 2016 Jan; 388():96-107. PubMed ID: 26506471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and evolutionary classification of G/U wobble basepairs in the ribosome.
    Mokdad A; Krasovska MV; Sponer J; Leontis NB
    Nucleic Acids Res; 2006; 34(5):1326-41. PubMed ID: 16522645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformational features of the four successive non-Watson-Crick base pairs in RNA duplex.
    Fujii S; Tanaka Y; Uesugi S; Tanaka T; Sakata T; Hiroaki H
    Nucleic Acids Symp Ser; 1992; (27):63-4. PubMed ID: 1283916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Additional Watson-Crick interactions suggest a structural core in large subunit ribosomal RNA.
    Haselman T; Gutell RR; Jurka J; Fox GE
    J Biomol Struct Dyn; 1989 Aug; 7(1):181-6. PubMed ID: 2684221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adenine-guanine base pairing ribosomal RNA.
    Traub W; Sussman JL
    Nucleic Acids Res; 1982 Apr; 10(8):2701-8. PubMed ID: 7043400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Possible conformations of nucleic acid fragments containing the base pair guanine:uracil].
    Poltev VI; Zhorov BS
    Biofizika; 1982; 27(2):320-2. PubMed ID: 7074158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advanced formulation of base pair changes in the stem regions of ribosomal RNAs; its application to mitochondrial rRNAs for resolving the phylogeny of animals.
    Otsuka J; Sugaya N
    J Theor Biol; 2003 Jun; 222(4):447-60. PubMed ID: 12781743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The phylogenetically conserved doublet tertiary interaction in domain III of the large subunit rRNA is crucial for ribosomal protein binding.
    Kooi EA; Rutgers CA; Mulder A; Van't Riet J; Venema J; Raué HA
    Proc Natl Acad Sci U S A; 1993 Jan; 90(1):213-6. PubMed ID: 8419926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modelling the secondary structures of slippage-prone hypervariable RNA regions: the example of the tiger beetle 18S rRNA variable region V4.
    Hancock JM; Vogler AP
    Nucleic Acids Res; 1998 Apr; 26(7):1689-99. PubMed ID: 9512540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of base identity and base pairing on the function of the alpha-sarcin loop of 23S rRNA.
    O'Connor M; Dahlberg AE
    Nucleic Acids Res; 1996 Jul; 24(14):2701-5. PubMed ID: 8758999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stability and cooperativity of nucleic acid base triplets.
    Jiang SP; Jernigan RL; Ting KL; Syi JL; Raghunathan G
    J Biomol Struct Dyn; 1994 Oct; 12(2):383-99. PubMed ID: 7702776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alternative base pairing between 5'- and 3'-terminal sequences of small subunit RNA may provide the basis of a conformational switch of the small ribosomal subunit.
    Kössel H; Hoch B; Zeltz P
    Nucleic Acids Res; 1990 Jul; 18(14):4083-8. PubMed ID: 2198532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of hairpin ribozyme variants with improved activity for poorly processed substrates.
    Drude I; Strahl A; Galla D; Müller O; Müller S
    FEBS J; 2011 Feb; 278(4):622-33. PubMed ID: 21199369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of a key tertiary interaction in the highly conserved GTPase center of large subunit ribosomal RNA.
    Ryan PC; Draper DE
    Proc Natl Acad Sci U S A; 1991 Jul; 88(14):6308-12. PubMed ID: 2068110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exceptionally high and diverse mutation rates in insects small rRNA.
    Feng YX; Krupp G; Gross JH
    Sci Sin B; 1985 Oct; 28(10):1060-3. PubMed ID: 3837321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectroscopic evidence for the uneven distribution of adenine and uracil residues in ribosomal ribonucleic acid of Drosophila melanogaster and of Plasmodium knowlesi and its possible evolutionary significance.
    Cox RA; Godwin E; Hastings JR
    Biochem J; 1976 Jun; 155(3):465-75. PubMed ID: 821475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA.
    Wuyts J; De Rijk P; Van de Peer Y; Pison G; Rousseeuw P; De Wachter R
    Nucleic Acids Res; 2000 Dec; 28(23):4698-708. PubMed ID: 11095680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.