These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19464343)

  • 41. Forced expression of α2,3-sialyltransferase IV rescues impaired heart development in α2,6-sialyltransferase I-deficient medaka.
    Omoto T; Wu D; Maruyama E; Tajima K; Hane M; Sato C; Kitajima K
    Biochem Biophys Res Commun; 2023 Mar; 649():62-70. PubMed ID: 36745971
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Beta-galactoside alpha2,6-sialyltransferase and the sialyl alpha2,6-galactosyl-linkage in tissues and cell lines.
    Dall'Olio F; Malagolini N; Chiricolo M
    Methods Mol Biol; 2006; 347():157-70. PubMed ID: 17072010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of the enzymatic properties of mouse beta-galactoside alpha2,6-sialyltransferases, ST6Gal I and II.
    Takashima S; Tsuji S; Tsujimoto M
    J Biochem; 2003 Aug; 134(2):287-96. PubMed ID: 12966079
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biosynthesis of the cancer-related sialyl-alpha 2,6-lactosaminyl epitope in colon cancer cell lines expressing beta-galactoside alpha 2,6-sialyltransferase under a constitutive promoter.
    Dall'Olio F; Chiricolo M; Mariani E; Facchini A
    Eur J Biochem; 2001 Nov; 268(22):5876-84. PubMed ID: 11722575
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells.
    Lin S; Kemmner W; Grigull S; Schlag PM
    Exp Cell Res; 2002 May; 276(1):101-10. PubMed ID: 11978012
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin G.
    Ogata S; Shimizu C; Franco A; Touma R; Kanegaye JT; Choudhury BP; Naidu NN; Kanda Y; Hoang LT; Hibberd ML; Tremoulet AH; Varki A; Burns JC
    PLoS One; 2013; 8(12):e81448. PubMed ID: 24324693
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gonadal regulation of gonadotropin subunit gene expression: evidence for regulation of follicle-stimulating hormone-beta messenger ribonucleic acid by nonsteroidal hormones in female rats.
    Dalkin AC; Haisenleder DJ; Ortolano GA; Suhr A; Marshall JC
    Endocrinology; 1990 Aug; 127(2):798-806. PubMed ID: 2115433
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Donor substrate specificities of Gal beta 1,4GlcNAc alpha 2,6-sialyltransferase and Gal beta 1,3GalNAc alpha 2,3-sialyltransferase: comparison of N-acetyl and N-glycolylneuraminic acids.
    Hamamoto T; Kurosawa N; Lee YC; Tsuji S
    Biochim Biophys Acta; 1995 May; 1244(1):223-8. PubMed ID: 7766662
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ST6Gal-I regulates macrophage apoptosis via α2-6 sialylation of the TNFR1 death receptor.
    Liu Z; Swindall AF; Kesterson RA; Schoeb TR; Bullard DC; Bellis SL
    J Biol Chem; 2011 Nov; 286(45):39654-62. PubMed ID: 21930713
    [TBL] [Abstract][Full Text] [Related]  

  • 50. α2,6-linked sialic acid serves as a high-affinity receptor for cancer oncolytic virotherapy with Newcastle disease virus.
    Li Q; Wei D; Feng F; Wang XL; Li C; Chen ZN; Bian H
    J Cancer Res Clin Oncol; 2017 Nov; 143(11):2171-2181. PubMed ID: 28687873
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ST6Gal-I sialyltransferase promotes tumor necrosis factor (TNF)-mediated cancer cell survival via sialylation of the TNF receptor 1 (TNFR1) death receptor.
    Holdbrooks AT; Britain CM; Bellis SL
    J Biol Chem; 2018 Feb; 293(5):1610-1622. PubMed ID: 29233887
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death.
    Amano M; Galvan M; He J; Baum LG
    J Biol Chem; 2003 Feb; 278(9):7469-75. PubMed ID: 12499376
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tumor cell migration and invasion are regulated by expression of variant integrin glycoforms.
    Shaikh FM; Seales EC; Clem WC; Hennessy KM; Zhuo Y; Bellis SL
    Exp Cell Res; 2008 Oct; 314(16):2941-50. PubMed ID: 18703050
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Beta-galactoside alpha2,6-sialyltransferase I cleavage by BACE1 enhances the sialylation of soluble glycoproteins. A novel regulatory mechanism for alpha2,6-sialylation.
    Sugimoto I; Futakawa S; Oka R; Ogawa K; Marth JD; Miyoshi E; Taniguchi N; Hashimoto Y; Kitazume S
    J Biol Chem; 2007 Nov; 282(48):34896-903. PubMed ID: 17897958
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gonadotropin-releasing hormone regulates follicle-stimulating hormone beta-subunit gene expression in the male rat.
    Rodin DA; Lalloz MR; Clayton RN
    Endocrinology; 1989 Sep; 125(3):1282-9. PubMed ID: 2503366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein sialylation by sialyltransferase involves radiation resistance.
    Lee M; Lee HJ; Bae S; Lee YS
    Mol Cancer Res; 2008 Aug; 6(8):1316-25. PubMed ID: 18708363
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of antiandrogens and ethane dimethane sulphonate (EDS) on gene expression, free subunits, bioactivity and secretion of pituitary gonadotrophins in male rats.
    Gromoll J; Weinbauer GF; Simoni M; Nieschlag E
    Mol Cell Endocrinol; 1993 Feb; 91(1-2):119-25. PubMed ID: 8386109
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of sialyltransferase expression by estradiol and 4-OH-tamoxifen in the human breast cancer cell MCF-7.
    Peyrat JP; Recchi MA; Hebbar M; Pawlowski V; Hornez L; Dong-Lebouhris X; Hondermarck H; Harduin-Lepers A; Delannoy P
    Mol Cell Biol Res Commun; 2000 Jan; 3(1):48-52. PubMed ID: 10683317
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cyclooxygenase-2 enzyme induces the expression of the α-2,3-sialyltransferase-3 (ST3Gal-I) in breast cancer.
    Sproviero D; Julien S; Burford B; Taylor-Papadimitriou J; Burchell JM
    J Biol Chem; 2012 Dec; 287(53):44490-7. PubMed ID: 23275522
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microheterogeneity of pituitary follicle-stimulating hormone in male rats: differential effects of the chronic androgen deprivation induced by castration or androgen blockade.
    Simoni M; Weinbauer GF; Chandolia RK; Nieschlag E
    J Mol Endocrinol; 1992 Oct; 9(2):175-82. PubMed ID: 1418388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.