These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1946443)

  • 21. Attenuation of paired-pulse facilitation associated with synaptic potentiation mediated by postsynaptic mechanisms.
    Wang JH; Kelly PT
    J Neurophysiol; 1997 Nov; 78(5):2707-16. PubMed ID: 9356420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new heparin-inhibited and polyamine-activated protein kinase from bovine kidney.
    Singh TJ
    FEBS Lett; 1989 Jan; 243(2):289-92. PubMed ID: 2917652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insulin-like growth factor I and insulin rapidly increase casein kinase II activity in BALB/c 3T3 fibroblasts.
    Klarlund JK; Czech MP
    J Biol Chem; 1988 Nov; 263(31):15872-5. PubMed ID: 3053682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the anoxia-induced long-term synaptic potentiation in area CA1 of the rat hippocampus.
    Hsu KS; Huang CC
    Br J Pharmacol; 1997 Oct; 122(4):671-81. PubMed ID: 9375963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical characterization of a casein kinase I-like actin kinase responsible for the actin-induced suppression of casein kinase II activity in vitro.
    Karino A; Okano M; Hatomi M; Nakamura T; Ohtsuki K
    Biochim Biophys Acta; 1999 Nov; 1472(3):603-16. PubMed ID: 10564775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors.
    O'Dell TJ; Kandel ER; Grant SG
    Nature; 1991 Oct; 353(6344):558-60. PubMed ID: 1656271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphorylation of serine 833 in cytoplasmic domain of low density lipoprotein receptor by a high molecular weight enzyme resembling casein kinase II.
    Kishimoto A; Brown MS; Slaughter CA; Goldstein JL
    J Biol Chem; 1987 Jan; 262(3):1344-51. PubMed ID: 3100530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential changes in the phosphorylation of the protein kinase C substrates myristoylated alanine-rich C kinase substrate and growth-associated protein-43/B-50 following Schaffer collateral long-term potentiation and long-term depression.
    Ramakers GM; McNamara RK; Lenox RH; De Graan PN
    J Neurochem; 1999 Nov; 73(5):2175-83. PubMed ID: 10537078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of rabbit reticulocyte guanine nucleotide exchange factor activity by casein kinases 1 and 2 and glycogen synthase kinase 3.
    Singh LP; Denslow ND; Wahba AJ
    Biochemistry; 1996 Mar; 35(10):3206-12. PubMed ID: 8605155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Critical differences in magnitude and duration of N-methyl D-aspartate(NMDA) receptor activation between long-term potentiation (LTP) and long-term depression (LTD) induction.
    Taniike N; Lu YF; Tomizawa K; Matsui H
    Acta Med Okayama; 2008 Feb; 62(1):21-8. PubMed ID: 18323868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification of a 107 kilodalton (kDa) casein kinase G substrate from thyroid cytosol.
    Levasseur S; Poleck T; Friedman Y; Burke G
    Mol Cell Biochem; 1988 Oct; 83(2):157-66. PubMed ID: 3200252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alterations in the balance of protein kinase and phosphatase activities and age-related impairments of synaptic transmission and long-term potentiation.
    Hsu KS; Huang CC; Liang YC; Wu HM; Chen YL; Lo SW; Ho WC
    Hippocampus; 2002; 12(6):787-802. PubMed ID: 12542230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of two casein kinase activities in the fungus Mucor rouxii.
    Pardo P; Moreno S
    Second Messengers Phosphoproteins; 1988; 12(4):183-96. PubMed ID: 3246673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurotrophin-induced activation of casein kinase 2 in rat hippocampal slices.
    Blanquet PR
    Neuroscience; 1998 Oct; 86(3):739-49. PubMed ID: 9692714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Induction and reversal of long-term potentiation by repeated high-frequency stimulation in rat hippocampal slices.
    Abraham WC; Huggett A
    Hippocampus; 1997; 7(2):137-45. PubMed ID: 9136046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization.
    Huang YY; Kandel ER
    Learn Mem; 1994; 1(1):74-82. PubMed ID: 10467587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemically induced, activity-independent LTD elicited by simultaneous activation of PKG and inhibition of PKA.
    Santschi L; Reyes-Harde M; Stanton PK
    J Neurophysiol; 1999 Sep; 82(3):1577-89. PubMed ID: 10482771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-restricted role for dendritic activation of the mTOR-p70S6K pathway in the induction of late-phase long-term potentiation in the CA1.
    Cammalleri M; Lütjens R; Berton F; King AR; Simpson C; Francesconi W; Sanna PP
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14368-73. PubMed ID: 14623952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Late phase of long-term potentiation induced by co-application of N-methyl-d-aspartic acid and the antagonist of NR2B-containing N-methyl-d-aspartic acid receptors in rat hippocampus.
    Oh-Nishi A; Saji M; Satoh SZ; Ogata M; Suzuki N
    Neuroscience; 2009 Mar; 159(1):127-35. PubMed ID: 19010396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A cytoplasmic, cyclic nucleotide-independent casein kinase II from Saccharomyces cerevisiae.
    Kudlicki W; Szyszka R; Gasior E
    Biochim Biophys Acta; 1984 Jan; 784(2-3):102-7. PubMed ID: 6362727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.