These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 19464523)
21. Effect of stimulus and recording parameters on spatial spread of excitation and masking patterns obtained with the electrically evoked compound action potential in cochlear implants. Hughes ML; Stille LJ Ear Hear; 2010 Oct; 31(5):679-92. PubMed ID: 20505513 [TBL] [Abstract][Full Text] [Related]
22. Automatic analysis of auditory nerve electrically evoked compound action potential with an artificial neural network. Charasse B; Thai-Van H; Chanal JM; Berger-Vachon C; Collet L Artif Intell Med; 2004 Jul; 31(3):221-9. PubMed ID: 15302088 [TBL] [Abstract][Full Text] [Related]
23. Programming cochlear implant stimulation levels in infants and children with a combination of objective measures. Gordon K; Papsin BC; Harrison RV Int J Audiol; 2004 Dec; 43 Suppl 1():S28-32. PubMed ID: 15732379 [TBL] [Abstract][Full Text] [Related]
24. Neural and receptor cochlear potentials obtained by transtympanic electrocochleography in auditory neuropathy. Santarelli R; Starr A; Michalewski HJ; Arslan E Clin Neurophysiol; 2008 May; 119(5):1028-41. PubMed ID: 18358774 [TBL] [Abstract][Full Text] [Related]
25. Clinical use of a system for the automated recording and analysis of electrically evoked compound action potentials (ECAPs) in cochlear implant patients. Gärtner L; Lenarz T; Joseph G; Büchner A Acta Otolaryngol; 2010 Jun; 130(6):724-32. PubMed ID: 19958247 [TBL] [Abstract][Full Text] [Related]
26. Identification of the impedance model of an implanted cochlear prosthesis from intracochlear potential measurements. Vanpoucke FJ; Zarowski AJ; Peeters SA IEEE Trans Biomed Eng; 2004 Dec; 51(12):2174-83. PubMed ID: 15605865 [TBL] [Abstract][Full Text] [Related]
27. Optimizing fitting in children using objective measures such as neural response imaging and electrically evoked stapedius reflex threshold. Caner G; Olgun L; Gültekin G; Balaban M Otol Neurotol; 2007 Aug; 28(5):637-40. PubMed ID: 17667772 [TBL] [Abstract][Full Text] [Related]
28. AutoNR: an automated system that measures ECAP thresholds with the Nucleus Freedom cochlear implant via machine intelligence. Botros A; van Dijk B; Killian M Artif Intell Med; 2007 May; 40(1):15-28. PubMed ID: 16920343 [TBL] [Abstract][Full Text] [Related]
29. Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current. Cohen LT Hear Res; 2009 Jan; 247(2):87-99. PubMed ID: 19063956 [TBL] [Abstract][Full Text] [Related]
30. Electrically evoked auditory steady-state responses in Guinea pigs. Jeng FC; Abbas PJ; Brown CJ; Miller CA; Nourski KV; Robinson BK Audiol Neurootol; 2007; 12(2):101-12. PubMed ID: 17264473 [TBL] [Abstract][Full Text] [Related]
31. Basis and some diagnostic implications of electrocochleography. Naunton RF; Zerlin S Laryngoscope; 1976 Apr; 86(4):475-82. PubMed ID: 177832 [TBL] [Abstract][Full Text] [Related]
32. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation. Mino H; Rubinstein JT; Miller CA; Abbas PJ IEEE Trans Biomed Eng; 2004 Jan; 51(1):13-20. PubMed ID: 14723489 [TBL] [Abstract][Full Text] [Related]
33. The clinical application of potentials evoked from the peripheral auditory system. Miller CA; Brown CJ; Abbas PJ; Chi SL Hear Res; 2008 Aug; 242(1-2):184-97. PubMed ID: 18515023 [TBL] [Abstract][Full Text] [Related]
34. Preliminary results on correlation between neural response imaging and 'most comfortable levels' in cochlear implantation. Akin I; Kuran G; Saka C; Vural M J Laryngol Otol; 2006 Apr; 120(4):261-5. PubMed ID: 16623968 [TBL] [Abstract][Full Text] [Related]
35. Signal strength versus cuff length in nerve cuff electrode recordings. Andreasen LN; Struijk JJ IEEE Trans Biomed Eng; 2002 Sep; 49(9):1045-50. PubMed ID: 12214877 [TBL] [Abstract][Full Text] [Related]
36. On the use of wavelet denoising and spike sorting techniques to process electroneurographic signals recorded using intraneural electrodes. Citi L; Carpaneto J; Yoshida K; Hoffmann KP; Koch KP; Dario P; Micera S J Neurosci Methods; 2008 Jul; 172(2):294-302. PubMed ID: 18534683 [TBL] [Abstract][Full Text] [Related]
37. Enhanced signal detectability in comodulated noise introduced by compression. Buschermöhle M; Feudel U; Freund JA Biol Cybern; 2008 Dec; 99(6):491-502. PubMed ID: 18810486 [TBL] [Abstract][Full Text] [Related]
38. Comparison of Electroaudiometry with cochlear implant in children with inner ear anomaly. Takanami T; Ito K; Yamasoba T; Kaga K Int J Pediatr Otorhinolaryngol; 2009 Jan; 73(1):153-8. PubMed ID: 19042035 [TBL] [Abstract][Full Text] [Related]
39. The effect of stimulus level on excitation patterns of individual electrode contacts in cochlear implants. Biesheuvel JD; Briaire JJ; Kalkman RK; Frijns JHM Hear Res; 2022 Jul; 420():108490. PubMed ID: 35395510 [TBL] [Abstract][Full Text] [Related]
40. A psychophysical forward masking comparison of longitudinal spread of neural excitation in the Contour and straight Nucleus electrode arrays. Cohen LT; Lenarz T; Battmer RD; Bender von Saebelkampf C; Busby PA; Cowan RS Int J Audiol; 2005 Oct; 44(10):559-66. PubMed ID: 16315446 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]