BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 19464727)

  • 1. pH control for enhanced reductive bioremediation of chlorinated solvent source zones.
    Robinson C; Barry DA; McCarty PL; Gerhard JI; Kouznetsova I
    Sci Total Environ; 2009 Aug; 407(16):4560-73. PubMed ID: 19464727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones.
    Seyedabbasi MA; Newell CJ; Adamson DT; Sale TC
    J Contam Hydrol; 2012 Jun; 134-135():69-81. PubMed ID: 22591740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Follow-up study on the effects on well chemistry from biological and chemical remediation of chlorinated solvents.
    Scott D; Apblett A; Materer NF
    J Environ Monit; 2011 Sep; 13(9):2521-6. PubMed ID: 21769369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation.
    Chambers JE; Wilkinson PB; Wealthall GP; Loke MH; Dearden R; Wilson R; Allen D; Ogilvy RD
    J Contam Hydrol; 2010 Oct; 118(1-2):43-61. PubMed ID: 20728959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of biogeochemical natural attenuation and treatment of chlorinated solvents, Altus Air Force Base, Altus, Oklahoma.
    Kennedy LG; Everett JW; Gonzales J
    J Contam Hydrol; 2006 Feb; 83(3-4):221-36. PubMed ID: 16377026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.
    Lee IS; Bae JH; McCarty PL
    J Contam Hydrol; 2007 Oct; 94(1-2):76-85. PubMed ID: 17610987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale modeling of reactive solute transport in fracture zones of granitic bedrocks.
    Molinero J; Samper J
    J Contam Hydrol; 2006 Jan; 82(3-4):293-318. PubMed ID: 16337025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors controlling BTEX and chlorinated solvents plume length under natural attenuation conditions.
    Atteia O; Guillot C
    J Contam Hydrol; 2007 Feb; 90(1-2):81-104. PubMed ID: 17081653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field.
    Hwang YK; Endres AL; Piggott SD; Parker BL
    J Contam Hydrol; 2008 Apr; 97(1-2):1-12. PubMed ID: 18258330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments.
    Rowland HA; Boothman C; Pancost R; Gault AG; Polya DA; Lloyd JR
    J Environ Qual; 2009; 38(4):1598-607. PubMed ID: 19549936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural attenuation of chlorinated organics in a shallow sand aquifer.
    Nobre RC; Nobre MM
    J Hazard Mater; 2004 Jul; 110(1-3):129-37. PubMed ID: 15177734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume.
    Lorah MM; Cozzarelli IM; Böhlke JK
    J Contam Hydrol; 2009 Apr; 105(3-4):99-117. PubMed ID: 19136178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geochemical impacts to groundwater from geologic carbon sequestration: controls on pH and inorganic carbon concentrations from reaction path and kinetic modeling.
    Wilkin RT; Digiulio DC
    Environ Sci Technol; 2010 Jun; 44(12):4821-7. PubMed ID: 20469895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural attenuation processes for remediation of arsenic contaminated soils and groundwater.
    Wang S; Mulligan CN
    J Hazard Mater; 2006 Dec; 138(3):459-70. PubMed ID: 17049728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron and arsenic release from aquifer solids in response to biostimulation.
    McLean JE; Dupont RR; Sorensen DL
    J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ.
    Brusseau ML; Nelson NT; Zhang Z; Blue JE; Rohrer J; Allen T
    J Contam Hydrol; 2007 Feb; 90(1-2):21-40. PubMed ID: 17049404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyhydroxyalkanoate (PHB) as a slow-release electron donor for advanced in situ bioremediation of chlorinated solvent-contaminated aquifers.
    Baric M; Pierro L; Pietrangeli B; Papini MP
    N Biotechnol; 2014 Jun; 31(4):377-82. PubMed ID: 24185077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of groundwater pH during bioremediation: improvement and validation of a geochemical model to assess the buffering potential of ground silicate minerals.
    Lacroix E; Brovelli A; Holliger C; Barry DA
    J Contam Hydrol; 2014 May; 160():21-9. PubMed ID: 24589423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of polyethylene hollow-fiber membranes for hydrogen delivery to support reductive dechlorination in a soil column.
    Ma X; Novak PJ; Clapp LW; Semmens MJ; Hozalski RM
    Water Res; 2003 Jul; 37(12):2905-18. PubMed ID: 12767293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.