These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 19464727)

  • 21. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater.
    Scow KM; Hicks KA
    Curr Opin Biotechnol; 2005 Jun; 16(3):246-53. PubMed ID: 15961025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term sustainability of reductive dechlorination reactions at chlorinated solvents sites.
    Newell CJ; Aziz CE
    Biodegradation; 2004 Dec; 15(6):387-94. PubMed ID: 15562996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of recharge-induced geochemical change in a contaminated aquifer.
    McGuire JT; Long DT; Hyndman DW
    Ground Water; 2005; 43(4):518-30. PubMed ID: 16029178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Near-surface wetland sediments as a source of arsenic release to ground water in Asia.
    Polizzotto ML; Kocar BD; Benner SG; Sampson M; Fendorf S
    Nature; 2008 Jul; 454(7203):505-8. PubMed ID: 18650922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals.
    van der Grift B; Griffioen J
    J Contam Hydrol; 2008 Feb; 96(1-4):48-68. PubMed ID: 18031865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solvent release into a sandy aquifer. 2. Estimation of DNAPL mass based on a multiple-component dissolution model.
    Broholm K; Feenstra S; Cherry JA
    Environ Sci Technol; 2005 Jan; 39(1):317-24. PubMed ID: 15667112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ bioremediation of monoaromatic pollutants in groundwater: a review.
    Farhadian M; Vachelard C; Duchez D; Larroche C
    Bioresour Technol; 2008 Sep; 99(13):5296-308. PubMed ID: 18054222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer.
    Maji R; Sudicky EA
    J Contam Hydrol; 2008 Nov; 102(1-2):105-19. PubMed ID: 18929427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioremediation Strategies Aimed at Stimulating Chlorinated Solvent Dehalogenation Can Lead to Microbially-Mediated Toluene Biogenesis.
    Moe WM; Reynolds SJ; Griffin MA; McReynolds JB
    Environ Sci Technol; 2018 Aug; 52(16):9311-9319. PubMed ID: 30044084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes.
    Peters SC
    J Contam Hydrol; 2008 Jul; 99(1-4):8-21. PubMed ID: 18571283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing the impacts of partial mass depletion in DNAPL source zones I. Analytical modeling of source strength functions and plume response.
    Falta RW; Suresh Rao P; Basu N
    J Contam Hydrol; 2005 Aug; 78(4):259-80. PubMed ID: 16019108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of principal component analysis to profile temporal and spatial variations of chlorinated solvent concentration in groundwater.
    Lucas L; Jauzein M
    Environ Pollut; 2008 Jan; 151(1):205-12. PubMed ID: 17540487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic.
    Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z
    Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.
    Page JW; Soga K; Illangasekare T
    J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydraulic/partitioning tracer tomography for DNAPL source zone characterization: small-scale sandbox experiments.
    Illman WA; Berg SJ; Liu X; Massi A
    Environ Sci Technol; 2010 Nov; 44(22):8609-14. PubMed ID: 20954708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioremediation of trichloroethylene contaminated groundwater using anaerobic process.
    Chomsurin C; Kajorntraidej J; Luangmuang K
    Water Sci Technol; 2008; 58(11):2127-32. PubMed ID: 19092188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reductive dehalogenation of tetrachloroethylene by microorganisms: current knowledge and application strategies.
    Chen G
    Appl Microbiol Biotechnol; 2004 Jan; 63(4):373-7. PubMed ID: 12811425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado.
    Li L; Steefel CI; Kowalsky MB; Englert A; Hubbard SS
    J Contam Hydrol; 2010 Mar; 112(1-4):45-63. PubMed ID: 20036028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ aerobic cometabolism of chlorinated solvents: a review.
    Frascari D; Zanaroli G; Danko AS
    J Hazard Mater; 2015; 283():382-99. PubMed ID: 25306537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor.
    Yu S; Semprini L
    J Hazard Mater; 2009 Aug; 167(1-3):97-104. PubMed ID: 19179006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.