These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 19464831)

  • 1. Forensic discrimination of glass using cathodoluminescence and CIE LAB color coordinates: a feasibility study.
    Bell SC; Nawrocki HD; Morris KB
    Forensic Sci Int; 2009 Aug; 189(1-3):93-9. PubMed ID: 19464831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of glass sources using elemental composition and refractive index: development of predictive models.
    Almirall JR; Cole MD; Gettinby G; Furton KG
    Sci Justice; 1998; 38(2):93-100. PubMed ID: 9624818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New methods for cathodoluminescence in the scanning electron microscope.
    Boyde A; Reid SA
    Scan Electron Microsc; 1983; (Pt 4):1803-14. PubMed ID: 6669948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of LAB color mode as a nondestructive method to differentiate black ballpoint pen inks.
    Hammond DL
    J Forensic Sci; 2007 Jul; 52(4):967-73. PubMed ID: 17553096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber-optic Based Spectral Cathodoluminescence: Simple and Economic Option for Use in Conventional and Environmental Scanning Electron Microscopy.
    Griffin BJ; Browne JR
    Microsc Microanal; 2000 Jan; 6(1):42-48. PubMed ID: 10675442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of V-defects in InGaN single quantum well films at the nanometer level by high-spatial-resolution cathodoluminescence spectroscopy.
    Yoshikawa M; Murakami M; Ishida H; Harima H
    Appl Spectrosc; 2008 Jan; 62(1):86-90. PubMed ID: 18230213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Likelihood ratio model for classification of forensic evidence.
    Zadora G; Neocleous T
    Anal Chim Acta; 2009 May; 642(1-2):266-78. PubMed ID: 19427485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of the feasibility of applying Raman microscopy for exploring stained glass.
    Bouchard M; Smith DC; Carabatos-Nédelec C
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1101-13. PubMed ID: 17765005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The characterization of automobile body fillers.
    McNorton SC; Nutter GW; Siegel JA
    J Forensic Sci; 2008 Jan; 53(1):116-24. PubMed ID: 18279248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications.
    Lee YK; Lee JS; Heo J; Im WB; Chung WJ
    Opt Lett; 2012 Aug; 37(15):3276-8. PubMed ID: 22859157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of glass fragments based on elemental composition and refractive index.
    Zadora G
    J Forensic Sci; 2009 Jan; 54(1):49-59. PubMed ID: 19018937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of evidence value of glass fragments by likelihood ratio and Bayesian Network approaches.
    Zadora G
    Anal Chim Acta; 2009 May; 642(1-2):279-90. PubMed ID: 19427486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved cathodoluminescence of luminescent materials using an EDX detector.
    Smet PF; Van Haecke JE; Poelman D
    J Microsc; 2008 Jul; 231(Pt 1):1-8. PubMed ID: 18638184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced interferometric profile measurements through refractive media.
    Koev ST; Ghodssi R
    Rev Sci Instrum; 2008 Sep; 79(9):093702. PubMed ID: 19044420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of analytical and interpretational protocols to facilitate the provenance establishment of polycarbonate headlamp lens material.
    May CD; Watling RJ
    J Forensic Sci; 2011 Jan; 56 Suppl 1():S47-57. PubMed ID: 20958302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New approach to cathodoluminescence studies in application to InGaN/GaN laser diode degradation.
    Płuska M; Czerwinski A; Ratajczak J; Katcki J; Marona L; Czernecki R; Leszczyński M; Perlin P
    J Microsc; 2009 Nov; 236(2):137-42. PubMed ID: 19903240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron beam controlled restructuring of luminescence centers in polycrystalline diamond.
    Zachreson C; Martin AA; Aharonovich I; Toth M
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10367-72. PubMed ID: 24932526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ luminescence spectroscopy with multivariate analysis for the discrimination of black ballpoint pen ink-lines on paper.
    Adam CD
    Forensic Sci Int; 2008 Nov; 182(1-3):27-34. PubMed ID: 18996657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress perturbation method for the assessment of cathodoluminescence probe response functions.
    Zhu W; Munisso MC; Matsutani A; Ge W; Pezzotti G
    Appl Spectrosc; 2009 Feb; 63(2):185-91. PubMed ID: 19215648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminous Transmittance, and Chromaticity of Colored Filter Glasses in CIE 1964 Uniform Color Space.
    Werner AJ
    Appl Opt; 1968 May; 7(5):849-55. PubMed ID: 20068697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.