These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19464940)

  • 1. Direct observation of cavitation fields at 23 and 515 kHz.
    Price GJ; Harris NK; Stewart AJ
    Ultrason Sonochem; 2010 Jan; 17(1):30-3. PubMed ID: 19464940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water temperature dependence of single bubble sonoluminescence threshold.
    Germano M; Alippi A; Bettucci A; Brizi F; Passeri D
    Ultrasonics; 2010 Jan; 50(1):81-3. PubMed ID: 19758674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound.
    Chen H; Li X; Wan M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e427-9. PubMed ID: 16782158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field.
    Cao H; Wan M; Qiao Y; Zhang S; Li R
    Ultrason Sonochem; 2012 Mar; 19(2):257-63. PubMed ID: 21862375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of fluorescence emissions from single-bubble sonoluminescence in water doped with quinine.
    Lu JQ; Wong HT; Lin FK; Liu YH
    Ultrasonics; 2006 Dec; 44 Suppl 1():e415-9. PubMed ID: 16806381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a reference ultrasonic cavitation vessel. Part 1: preliminary investigation of the acoustic field distribution in a 25 kHz cylindrical cell.
    Hodnett M; Choi MJ; Zeqiri B
    Ultrason Sonochem; 2007 Jan; 14(1):29-40. PubMed ID: 16549381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observations of water cavitation intensity under practical ultrasonic cleaning conditions.
    Niemczewski B
    Ultrason Sonochem; 2007 Jan; 14(1):13-8. PubMed ID: 16455284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New approach for quantitative measurement of ultrasonic cavitation yields.
    Noh SC; Kim JY; Kim JS; Kang JH; Min HK; Ho H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1241-4. PubMed ID: 22254541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of spatial distribution of sound field parameters in ultrasound cleaning baths under the influence of cavitation.
    Jenderka KV; Koch C
    Ultrasonics; 2006 Dec; 44 Suppl 1():e401-6. PubMed ID: 16781752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of correlation between chemical dosimetry and subharmonic spectrum analysis to examine the acoustic cavitation.
    Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM
    Ultrason Sonochem; 2010 Jun; 17(5):863-9. PubMed ID: 20236851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple observations of cavitation cluster dynamics close to an ultrasonic horn tip.
    Birkin PR; Offin DG; Vian CJ; Leighton TG
    J Acoust Soc Am; 2011 Nov; 130(5):3379-88. PubMed ID: 22088011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation.
    Sokka SD; Gauthier TP; Hynynen K
    Phys Med Biol; 2005 May; 50(9):2167-79. PubMed ID: 15843744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards classification of the bifurcation structure of a spherical cavitation bubble.
    Behnia S; Sojahrood AJ; Soltanpoor W; Sarkhosh L
    Ultrasonics; 2009 Dec; 49(8):605-10. PubMed ID: 19545884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The detection and control of stable and transient acoustic cavitation bubbles.
    Ashokkumar M; Lee J; Iida Y; Yasui K; Kozuka T; Tuziuti T; Towata A
    Phys Chem Chem Phys; 2009 Nov; 11(43):10118-21. PubMed ID: 19865767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback loop process to control acoustic cavitation.
    Sabraoui A; Inserra C; Gilles B; Béra JC; Mestas JL
    Ultrason Sonochem; 2011 Mar; 18(2):589-94. PubMed ID: 20843725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the physical origin of conical bubble structure under an ultrasonic horn.
    Dubus B; Vanhille C; Campos-Pozuelo C; Granger C
    Ultrason Sonochem; 2010 Jun; 17(5):810-8. PubMed ID: 20371200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of vapour pressure in multibubble sonoluminescence from organic solvents.
    Troia A; Ripa DM
    Ultrason Sonochem; 2011 Sep; 18(5):1180-4. PubMed ID: 21316288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.
    Haworth KJ; Raymond JL; Radhakrishnan K; Moody MR; Huang SL; Peng T; Shekhar H; Klegerman ME; Kim H; McPherson DD; Holland CK
    Ultrasound Med Biol; 2016 Feb; 42(2):518-27. PubMed ID: 26547633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic and thermodynamic features of conical bubble luminescence.
    Godínez FA; Navarrete M; Sánchez-Ake C; Mejía-Uriarte EV; Villagrán-Muniz M
    Ultrason Sonochem; 2012 May; 19(3):668-81. PubMed ID: 21963140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed observation of cavitation bubble clouds near a tissue boundary in high-intensity focused ultrasound fields.
    Chen H; Li X; Wan M; Wang S
    Ultrasonics; 2009 Mar; 49(3):289-92. PubMed ID: 19041998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.