These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 19465246)
1. Effects of organic acids on thermal inactivation of acid and cold stressed Enterococcus faecium. Fernández A; Alvarez-Ordóñez A; López M; Bernardo A Food Microbiol; 2009 Aug; 26(5):497-503. PubMed ID: 19465246 [TBL] [Abstract][Full Text] [Related]
2. Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384. Alvarez-Ordóñez A; Fernández A; López M; Bernardo A Food Microbiol; 2009 May; 26(3):347-53. PubMed ID: 19269580 [TBL] [Abstract][Full Text] [Related]
3. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782 [TBL] [Abstract][Full Text] [Related]
4. A comparative study of thermal and acid inactivation kinetics in fruit juices of Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Senftenberg grown at acidic conditions. Alvarez-Ordóñez A; Fernández A; Bernardo A; López M Foodborne Pathog Dis; 2009 Nov; 6(9):1147-55. PubMed ID: 19694554 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages during maturation/storage. Lindqvist R; Lindblad M Int J Food Microbiol; 2009 Jan; 129(1):59-67. PubMed ID: 19064299 [TBL] [Abstract][Full Text] [Related]
6. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures. Alvarez-Ordóñez A; Fernández A; Bernardo A; López M Food Microbiol; 2010 Feb; 27(1):44-9. PubMed ID: 19913691 [TBL] [Abstract][Full Text] [Related]
7. Comparison of acids on the induction of an Acid Tolerance Response in Salmonellatyphimurium, consequences for food safety. Alvarez-Ordóñez A; Fernández A; Bernardo A; López M Meat Sci; 2009 Jan; 81(1):65-70. PubMed ID: 22063963 [TBL] [Abstract][Full Text] [Related]
8. Arginine and lysine decarboxylases and the acid tolerance response of Salmonella Typhimurium. Alvarez-Ordóñez A; Fernández A; Bernardo A; López M Int J Food Microbiol; 2010 Jan; 136(3):278-82. PubMed ID: 19864032 [TBL] [Abstract][Full Text] [Related]
9. Heat and acid tolerance of Listeria monocytogenes after exposure to single and multiple sublethal stresses. Skandamis PN; Yoon Y; Stopforth JD; Kendall PA; Sofos JN Food Microbiol; 2008 Apr; 25(2):294-303. PubMed ID: 18206772 [TBL] [Abstract][Full Text] [Related]
10. Acid adaptation affects the viability of Salmonella typhimurium during the lactic fermentation of skim milk and product storage. Shen HW; Yu RC; Chou CC Int J Food Microbiol; 2007 Mar; 114(3):380-5. PubMed ID: 17218032 [TBL] [Abstract][Full Text] [Related]
11. Survival of the acid-adapted Bacillus cereus in acidic environments. Chen JL; Chiang ML; Chou CC Int J Food Microbiol; 2009 Jan; 128(3):424-8. PubMed ID: 18986725 [TBL] [Abstract][Full Text] [Related]
12. Effect of a previous heat shock on the thermal resistance of Listeria monocytogenes and Pseudomonas aeruginosa at different pHs. Hassani M; Mañas P; Pagán R; Condón S Int J Food Microbiol; 2007 May; 116(2):228-38. PubMed ID: 17355896 [TBL] [Abstract][Full Text] [Related]
13. The effect of acid adaptation on the susceptibility of Bacillus cereus to the stresses of temperature and H2O2 as well as enterotoxin production. Chen JL; Chiang ML; Chou CC Foodborne Pathog Dis; 2009; 6(1):71-9. PubMed ID: 18991549 [TBL] [Abstract][Full Text] [Related]
14. Inactivation kinetics of Yersinia enterocolitica by citric and lactic acid at different temperatures. Virto R; Sanz D; Alvarez I; Condón ; Raso J Int J Food Microbiol; 2005 Sep; 103(3):251-7. PubMed ID: 16099310 [TBL] [Abstract][Full Text] [Related]
15. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation. Naim F; Zareifard MR; Zhu S; Huizing RH; Grabowski S; Marcotte M Food Microbiol; 2008 Oct; 25(7):936-41. PubMed ID: 18721685 [TBL] [Abstract][Full Text] [Related]
16. Temperature-assisted high hydrostatic pressure inactivation of Staphylococcus aureus in a ham model system: evaluation in selective and nonselective medium. Tassou CC; Panagou EZ; Samaras FJ; Galiatsatou P; Mallidis CG J Appl Microbiol; 2008 Jun; 104(6):1764-73. PubMed ID: 18298540 [TBL] [Abstract][Full Text] [Related]
17. Thermal inactivation of Enterococcus faecium: effect of growth temperature and physiological state of microbial cells. Martínez S; López M; Bernardo A Lett Appl Microbiol; 2003; 37(6):475-81. PubMed ID: 14633102 [TBL] [Abstract][Full Text] [Related]
18. Towards the quantification of the effect of acid treatment on the heat tolerance of Escherichia coli K12 at lethal temperatures. Velliou EG; Van Derlinden E; Cappuyns AM; Nikolaidou E; Geeraerd AH; Devlieghere F; Van Impe JF Food Microbiol; 2011 Jun; 28(4):702-11. PubMed ID: 21511130 [TBL] [Abstract][Full Text] [Related]
19. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth. Ben Yaghlene H; Leguerinel I; Hamdi M; Mafart P Int J Food Microbiol; 2009 Jul; 133(1-2):48-61. PubMed ID: 19447512 [TBL] [Abstract][Full Text] [Related]
20. Study of the effect of lethal and sublethal pH and a(w) stresses on the inactivation or growth of Listeria monocytogenes and Salmonella Typhimurium. Tiganitas A; Zeaki N; Gounadaki AS; Drosinos EH; Skandamis PN Int J Food Microbiol; 2009 Aug; 134(1-2):104-12. PubMed ID: 19356819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]