These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 19465396)

  • 41. SICOR: Subgraph Isomorphism Comparison of RNA Secondary Structures.
    Schmidt M; Hamacher K; Reinhardt F; Lotz TS; Groher F; Suess B; Jager S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2189-2195. PubMed ID: 31295116
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Four steps for revealing and adjusting the 3D structure of aptamers in solution by small-angle X-ray scattering and computer simulation.
    Tomilin FN; Moryachkov R; Shchugoreva I; Zabluda VN; Peters G; Platunov M; Spiridonova V; Melnichuk A; Atrokhova A; Zamay SS; Ovchinnikov SG; Zamay GS; Sokolov A; Zamay TN; Berezovski MV; Kichkailo AS
    Anal Bioanal Chem; 2019 Oct; 411(25):6723-6732. PubMed ID: 31396648
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RAID3--An interleukin-6 receptor-binding aptamer with post-selective modification-resistant affinity.
    Mittelberger F; Meyer C; Waetzig GH; Zacharias M; Valentini E; Svergun DI; Berg K; Lorenzen I; Grötzinger J; Rose-John S; Hahn U
    RNA Biol; 2015; 12(9):1043-53. PubMed ID: 26383776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RNAapt3D: RNA aptamer 3D-structural modeling database.
    Sato R; Suzuki K; Yasuda Y; Suenaga A; Fukui K
    Biophys J; 2022 Dec; 121(24):4770-4776. PubMed ID: 36146935
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay.
    Win MN; Klein JS; Smolke CD
    Nucleic Acids Res; 2006; 34(19):5670-82. PubMed ID: 17038331
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Solution structure of an informationally complex high-affinity RNA aptamer to GTP.
    Carothers JM; Davis JH; Chou JJ; Szostak JW
    RNA; 2006 Apr; 12(4):567-79. PubMed ID: 16510427
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A computational proposal for designing structured RNA pools for in vitro selection of RNAs.
    Kim N; Gan HH; Schlick T
    RNA; 2007 Apr; 13(4):478-92. PubMed ID: 17322501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories.
    Bing T; Yang X; Mei H; Cao Z; Shangguan D
    Bioorg Med Chem; 2010 Mar; 18(5):1798-805. PubMed ID: 20153201
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure of an RNA aptamer in complex with the fluorophore tetramethylrhodamine.
    Duchardt-Ferner E; Juen M; Bourgeois B; Madl T; Kreutz C; Ohlenschläger O; Wöhnert J
    Nucleic Acids Res; 2020 Jan; 48(2):949-961. PubMed ID: 31754719
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A validation strategy for in silico generated aptamers.
    Cataldo R; Ciriaco F; Alfinito E
    Comput Biol Chem; 2018 Dec; 77():123-130. PubMed ID: 30308477
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity.
    Geiger A; Burgstaller P; von der Eltz H; Roeder A; Famulok M
    Nucleic Acids Res; 1996 Mar; 24(6):1029-36. PubMed ID: 8604334
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RiboaptDB: a comprehensive database of ribozymes and aptamers.
    Thodima V; Pirooznia M; Deng Y
    BMC Bioinformatics; 2006 Sep; 7 Suppl 2(Suppl 2):S6. PubMed ID: 17118149
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D Cell-SELEX: Development of RNA aptamers as molecular probes for PC-3 tumor cell line.
    Souza AG; Marangoni K; Fujimura PT; Alves PT; Silva MJ; Bastos VA; Goulart LR; Goulart VA
    Exp Cell Res; 2016 Feb; 341(2):147-56. PubMed ID: 26821206
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Selection of LNA-containing DNA aptamers against recombinant human CD73.
    Elle IC; Karlsen KK; Terp MG; Larsen N; Nielsen R; Derbyshire N; Mandrup S; Ditzel HJ; Wengel J
    Mol Biosyst; 2015 May; 11(5):1260-70. PubMed ID: 25720604
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of aptamer-target interacting pairs with pseudo-amino acid composition.
    Li BQ; Zhang YC; Huang GH; Cui WR; Zhang N; Cai YD
    PLoS One; 2014; 9(1):e86729. PubMed ID: 24466214
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tracking RNA with light: selection, structure, and design of fluorescence turn-on RNA aptamers.
    Trachman RJ; Ferré-D'Amaré AR
    Q Rev Biophys; 2019 Aug; 52():e8. PubMed ID: 31423956
    [TBL] [Abstract][Full Text] [Related]  

  • 57. What defines a synthetic riboswitch? - Conformational dynamics of ciprofloxacin aptamers with similar binding affinities but varying regulatory potentials.
    Kaiser C; Schneider J; Groher F; Suess B; Wachtveitl J
    Nucleic Acids Res; 2021 Apr; 49(7):3661-3671. PubMed ID: 33772594
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro selection of dopamine RNA ligands.
    Mannironi C; Di Nardo A; Fruscoloni P; Tocchini-Valentini GP
    Biochemistry; 1997 Aug; 36(32):9726-34. PubMed ID: 9245404
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selection of RNA aptamers that bind HIV-1 LTR DNA duplexes: strand invaders.
    Srisawat C; Engelke DR
    Nucleic Acids Res; 2010 Dec; 38(22):8306-15. PubMed ID: 20693539
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing.
    Savory N; Abe K; Sode K; Ikebukuro K
    Biosens Bioelectron; 2010 Dec; 26(4):1386-91. PubMed ID: 20692149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.