These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 19465479)
21. Autoregulatory control of the p53 response by Siah-1L-mediated HIPK2 degradation. Calzado MA; de la Vega L; Muñoz E; Schmitz ML Biol Chem; 2009 Oct; 390(10):1079-83. PubMed ID: 19642869 [TBL] [Abstract][Full Text] [Related]
22. Nik-related kinase is targeted for proteasomal degradation by the chaperone-dependent ubiquitin ligase CHIP. Naito S; Fukushima T; Endo A; Denda K; Komada M FEBS Lett; 2020 Jun; 594(11):1778-1786. PubMed ID: 32162334 [TBL] [Abstract][Full Text] [Related]
23. Protein-Protein Interactions Modulate the Docking-Dependent E3-Ubiquitin Ligase Activity of Carboxy-Terminus of Hsc70-Interacting Protein (CHIP). Narayan V; Landré V; Ning J; Hernychova L; Muller P; Verma C; Walkinshaw MD; Blackburn EA; Ball KL Mol Cell Proteomics; 2015 Nov; 14(11):2973-87. PubMed ID: 26330542 [TBL] [Abstract][Full Text] [Related]
24. C-terminus of heat shock protein 70-interacting protein facilitates degradation of apoptosis signal-regulating kinase 1 and inhibits apoptosis signal-regulating kinase 1-dependent apoptosis. Hwang JR; Zhang C; Patterson C Cell Stress Chaperones; 2005; 10(2):147-56. PubMed ID: 16038411 [TBL] [Abstract][Full Text] [Related]
25. Opposing biological functions of the cytoplasm and nucleus DAXX modified by SUMO-2/3 in gastric cancer. Chen C; Sun X; Xie W; Chen S; Hu Y; Xing D; Xu J; Chen X; Zhao Z; Han Z; Xue X; Shen X; Lin K Cell Death Dis; 2020 Jul; 11(7):514. PubMed ID: 32641734 [TBL] [Abstract][Full Text] [Related]
26. PARP1 regulates the protein stability and proapoptotic function of HIPK2. Choi JR; Shin KS; Choi CY; Kang SJ Cell Death Dis; 2016 Oct; 7(10):e2438. PubMed ID: 27787517 [TBL] [Abstract][Full Text] [Related]
27. MDM4/HIPK2/p53 cytoplasmic assembly uncovers coordinated repression of molecules with anti-apoptotic activity during early DNA damage response. Mancini F; Pieroni L; Monteleone V; Lucà R; Fici L; Luca E; Urbani A; Xiong S; Soddu S; Masetti R; Lozano G; Pontecorvi A; Moretti F Oncogene; 2016 Jan; 35(2):228-40. PubMed ID: 25961923 [TBL] [Abstract][Full Text] [Related]
28. The SUMO ligase PIAS1 regulates UV-induced apoptosis by recruiting Daxx to SUMOylated foci. Sudharsan R; Azuma Y J Cell Sci; 2012 Dec; 125(Pt 23):5819-29. PubMed ID: 22976298 [TBL] [Abstract][Full Text] [Related]
29. Daxx is a key downstream component of receptor interacting protein kinase 3 mediating retinal ischemic cell death. Lee YS; Dayma Y; Park MY; Kim KI; Yoo SE; Kim E FEBS Lett; 2013 Jan; 587(3):266-71. PubMed ID: 23260419 [TBL] [Abstract][Full Text] [Related]
30. HIPK2 regulates transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and apoptosis in human hepatoma cells. Hofmann TG; Stollberg N; Schmitz ML; Will H Cancer Res; 2003 Dec; 63(23):8271-7. PubMed ID: 14678985 [TBL] [Abstract][Full Text] [Related]
31. p14ARF interacts with DAXX: effects on HDM2 and p53. Ivanchuk SM; Mondal S; Rutka JT Cell Cycle; 2008 Jun; 7(12):1836-50. PubMed ID: 18583933 [TBL] [Abstract][Full Text] [Related]
32. Transcriptional Repressor DAXX Promotes Prostate Cancer Tumorigenicity via Suppression of Autophagy. Puto LA; Brognard J; Hunter T J Biol Chem; 2015 Jun; 290(25):15406-15420. PubMed ID: 25903140 [TBL] [Abstract][Full Text] [Related]
33. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Winter M; Sombroek D; Dauth I; Moehlenbrink J; Scheuermann K; Crone J; Hofmann TG Nat Cell Biol; 2008 Jul; 10(7):812-24. PubMed ID: 18536714 [TBL] [Abstract][Full Text] [Related]
34. Modification of Daxx by small ubiquitin-related modifier-1. Jang MS; Ryu SW; Kim E Biochem Biophys Res Commun; 2002 Jul; 295(2):495-500. PubMed ID: 12150977 [TBL] [Abstract][Full Text] [Related]
35. Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. Yan C; Lu D; Hai T; Boyd DD EMBO J; 2005 Jul; 24(13):2425-35. PubMed ID: 15933712 [TBL] [Abstract][Full Text] [Related]
36. Daxx-beta and Daxx-gamma, two novel splice variants of the transcriptional co-repressor Daxx. Wethkamp N; Hanenberg H; Funke S; Suschek CV; Wetzel W; Heikaus S; Grinstein E; Ramp U; Engers R; Gabbert HE; Mahotka C J Biol Chem; 2011 Jun; 286(22):19576-88. PubMed ID: 21482821 [TBL] [Abstract][Full Text] [Related]
37. Identification of two independent SUMO-interacting motifs in Daxx: evolutionary conservation from Drosophila to humans and their biochemical functions. Santiago A; Godsey AC; Hossain J; Zhao LY; Liao D Cell Cycle; 2009 Jan; 8(1):76-87. PubMed ID: 19106612 [TBL] [Abstract][Full Text] [Related]