These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19465555)

  • 21. Mechanism of discordant T wave alternans in the in vivo heart.
    Chinushi M; Kozhevnikov D; Caref EB; Restivo M; El-Sherif N
    J Cardiovasc Electrophysiol; 2003 Jun; 14(6):632-8. PubMed ID: 12875425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular basis for QT dispersion.
    Antzelevitch C; Shimizu W; Yan GX; Sicouri S
    J Electrocardiol; 1998; 30 Suppl():168-75. PubMed ID: 9535495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identify drug-induced T wave morphology changes by a cell-to-electrocardiogram model and validation with clinical trial data.
    Xue J; Gao W; Chen Y; Han X
    J Electrocardiol; 2009; 42(6):534-42. PubMed ID: 19700171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A reliability analysis of cardiac repolarization time markers.
    Scacchi S; Franzone PC; Pavarino LF; Taccardi B
    Math Biosci; 2009 Jun; 219(2):113-28. PubMed ID: 19328815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrocardiographic morphology changes with different type of repolarization dispersions.
    Xue J; Chen Y; Han X; Gao W
    J Electrocardiol; 2010; 43(6):553-9. PubMed ID: 20863514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repolarization gradients in the canine left ventricle before and after induction of short-term cardiac memory.
    Janse MJ; Sosunov EA; Coronel R; Opthof T; Anyukhovsky EP; de Bakker JM; Plotnikov AN; Shlapakova IN; Danilo P; Tijssen JG; Rosen MR
    Circulation; 2005 Sep; 112(12):1711-8. PubMed ID: 16157774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge.
    de Oliveira BL; Rocha BM; Barra LP; Toledo EM; Sundnes J; Weber dos Santos R
    Int J Numer Method Biomed Eng; 2013 Dec; 29(12):1323-37. PubMed ID: 23794390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation recovery time measurements in evaluation of global sequence and dispersion of ventricular repolarization.
    Xia Y; Kongstad O; Hertervig E; Li Z; Holm M; Olsson B; Yuan S
    J Electrocardiol; 2005 Jan; 38(1):28-35. PubMed ID: 15660344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interventricular dispersion in repolarization causes bifid T waves in dogs with dofetilide-induced long QT syndrome.
    Meijborg VM; Chauveau S; Janse MJ; Anyukhovsky EP; Danilo PR; Rosen MR; Opthof T; Coronel R
    Heart Rhythm; 2015 Jun; 12(6):1343-51. PubMed ID: 25724833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dispersion of repolarization, myocardial iso-source maps, and the electrocardiographic T and U waves.
    Ritsema van Eck HJ; Kors JA; van Herpen G
    J Electrocardiol; 2006 Oct; 39(4 Suppl):S96-100. PubMed ID: 16920144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Validation of a noninvasive measure of local myocardial repolarization in a conscious human model: adaptation of repolarization to changes in rate.
    Lee SD; Dorian P; Geist M; Davies E; Barr A; Dunne C; Paquette M; Newman D
    J Cardiovasc Electrophysiol; 1999 Sep; 10(9):1171-9. PubMed ID: 10517648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laplacian electrograms and the interpretation of complex ventricular activation patterns during ventricular fibrillation.
    Coronel R; Wilms-Schopman FJ; de Groot JR; Janse MJ; van Capelle FJ; de Bakker JM
    J Cardiovasc Electrophysiol; 2000 Oct; 11(10):1119-28. PubMed ID: 11059976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellular and ionic basis for T-wave alternans under long-QT conditions.
    Shimizu W; Antzelevitch C
    Circulation; 1999 Mar; 99(11):1499-507. PubMed ID: 10086976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. T-wave alternans: lessons learned from a biophysical ECG model.
    Sassi R; Mainardi LT
    J Electrocardiol; 2012; 45(6):566-70. PubMed ID: 22958909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The U wave in the electrocardiogram: a solution for a 100-year-old riddle.
    Ritsema van Eck HJ; Kors JA; van Herpen G
    Cardiovasc Res; 2005 Aug; 67(2):256-62. PubMed ID: 15913583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A completely automated activation-repolarization interval algorithm for directly coupled unipolar electrograms and its three-dimensional correlation with refractory periods.
    Witkowski FX; Penkoske PA
    J Electrocardiol; 1988 Aug; 21(3):273-82. PubMed ID: 3171460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ability of activation recovery intervals to assess action potential duration during acute no-flow ischemia in the in situ porcine heart. Experimental Cardiology Group, University of North Carolina at Chapel Hill.
    Ejima J; Martin D; Engle C; Sherman Z; Kunimoto S; Gettes LS
    J Cardiovasc Electrophysiol; 1998 Aug; 9(8):832-44. PubMed ID: 9727662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation study of QRS-T waves based on an eccentric spherical model of the heart.
    Hori M
    Jpn Circ J; 1978 May; 42(5):539-51. PubMed ID: 702772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of action potential duration on T
    Arteyeva NV; Azarov JE
    J Electrocardiol; 2017; 50(6):919-924. PubMed ID: 28784265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of I(Ks) heterogeneities on the genesis of the T-wave: a computational evaluation.
    Keller DU; Weiss DL; Dossel O; Seemann G
    IEEE Trans Biomed Eng; 2012 Feb; 59(2):311-22. PubMed ID: 21926009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.