These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 19465722)

  • 1. Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes.
    Yunusa IA; Burchett MD; Manoharan V; Desilva DL; Eamus D; Skilbeck CG
    J Environ Qual; 2009; 38(4):1466-72. PubMed ID: 19465722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and elemental accumulation by canola on soil amended with coal fly ash.
    Yunusa IA; Manoharan V; DeSilva DL; Eamus D; Murray BR; Nissanka SP
    J Environ Qual; 2008; 37(3):1263-70. PubMed ID: 18453446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coal fly ash as an amendment to container substrate for Spathiphyllum production.
    Chen J; Li Y
    Bioresour Technol; 2006 Oct; 97(15):1920-6. PubMed ID: 16214336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential growth and yield by canola (Brassica napus L.) and wheat (Triticum aestivum L.) arising from alterations in chemical properties of sandy soils due to additions of fly ash.
    Yunusa IA; Manoharan V; Harris R; Lawrie R; Pal Y; Quiton JT; Bell R; Eamus D
    J Sci Food Agric; 2013 Mar; 93(5):995-1002. PubMed ID: 23070937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal leaching from coal fly ash amended container substrates during Syngonium production.
    Li Q; Chen J; Li Y
    J Environ Sci Health B; 2008 Feb; 43(2):179-86. PubMed ID: 18246510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of aqueous phosphorus onto bituminous and lignitous coal ashes.
    Yan J; Kirk DW; Jia CQ; Liu X
    J Hazard Mater; 2007 Sep; 148(1-2):395-401. PubMed ID: 17400372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The leaching characteristics of selenium from coal fly ashes.
    Wang T; Wang J; Burken JG; Ban H; Ladwig K
    J Environ Qual; 2007; 36(6):1784-92. PubMed ID: 17965381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobilization of iron from coal fly ash was dependent upon the particle size and the source of coal.
    Smith KR; Veranth JM; Lighty JS; Aust AE
    Chem Res Toxicol; 1998 Dec; 11(12):1494-500. PubMed ID: 9860493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury in coal ash and its fate in the Indian subcontinent: A synoptic review.
    Mukherjee AB; Zevenhoven R
    Sci Total Environ; 2006 Sep; 368(1):384-92. PubMed ID: 16183102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on chemical species of arsenic, selenium and antimony in fly ash from coal fuel thermal power stations.
    Narukawa T; Takatsu A; Chiba K; Riley KW; French DH
    J Environ Monit; 2005 Dec; 7(12):1342-8. PubMed ID: 16307094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aluminium in coal fly ash (FA), in plants grown on FA, and in the leachates from FA.
    Bilski J; McLean K; Soumaila F; McLean E; Kraft C
    Res J Chem Environ Sci; 2014 Aug; 2(4):22-26. PubMed ID: 28890900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative evaluation of minerals in fly ashes of biomass, coal and biomass-coal mixture derived from circulating fluidised bed combustion technology.
    Koukouzas N; Ward CR; Papanikolaou D; Li Z; Ketikidis C
    J Hazard Mater; 2009 Sep; 169(1-3):100-7. PubMed ID: 19410365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics and the behavior in electrostatic precipitators of high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China.
    Qi L; Yuan Y
    J Hazard Mater; 2011 Aug; 192(1):222-5. PubMed ID: 21621327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agro-toxicological aspects of coal fly ash (FA) phytoremediation by cereal crops: effects on plant germination, growth and trace elements accumulation.
    Bilski J; Jacob D; Mclean K; McLean E; Soumaila F; Lander M
    Adv Biores; 2012 Dec; 3(4):121-129. PubMed ID: 29657500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fly ash effect on improving soil properties and rice productivity in Korean paddy soils.
    Lee H; Ha HS; Lee CH; Lee YB; Kim PJ
    Bioresour Technol; 2006 Sep; 97(13):1490-7. PubMed ID: 16153826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speciation of nickel in Canadian subbituminous and bituminous feed coals, and their ash by-products.
    Goodarzi F; Huggins F
    J Environ Monit; 2004 Oct; 6(10):787-91. PubMed ID: 15480491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plants.
    Karangelos DJ; Petropoulos NP; Anagnostakis MJ; Hinis EP; Simopoulos SE
    J Environ Radioact; 2004; 77(3):233-46. PubMed ID: 15381319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash.
    Belyaeva ON; Haynes RJ
    Bioresour Technol; 2009 Nov; 100(21):5203-9. PubMed ID: 19539464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of fly ash properties from Afsin-Elbistan coal basin, Turkey.
    Ural S
    J Hazard Mater; 2005 Mar; 119(1-3):85-92. PubMed ID: 15752852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the mechanical properties of class-F fly ash.
    Kim B; Prezzi M
    Waste Manag; 2008; 28(3):649-59. PubMed ID: 17588739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.