These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 19465739)

  • 1. The cortical site of visual suppression by transcranial magnetic stimulation.
    Thielscher A; Reichenbach A; Uğurbil K; Uludağ K
    Cereb Cortex; 2010 Feb; 20(2):328-38. PubMed ID: 19465739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas.
    Kammer T; Puls K; Erb M; Grodd W
    Exp Brain Res; 2005 Jan; 160(1):129-40. PubMed ID: 15368087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronavigated transcranial magnetic stimulation suggests that area V2 is necessary for visual awareness.
    Salminen-Vaparanta N; Koivisto M; Noreika V; Vanni S; Revonsuo A
    Neuropsychologia; 2012 Jun; 50(7):1621-7. PubMed ID: 22465860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bypassing input to V1 in visual awareness: A TMS-EROS investigation.
    Knight RS; Chen T; Center EG; Gratton G; Fabiani M; Savazzi S; Mazzi C; Beck DM
    Neuropsychologia; 2024 Jun; 198():108864. PubMed ID: 38521150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is selective primary visual cortex stimulation achievable with TMS?
    Salminen-Vaparanta N; Noreika V; Revonsuo A; Koivisto M; Vanni S
    Hum Brain Mapp; 2012 Mar; 33(3):652-65. PubMed ID: 21416561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TMS reveals inhibitory extrastriate cortico-cortical feedback modulation of V1 activity in humans.
    Maniglia M; Trotter Y; Aedo-Jury F
    Brain Struct Funct; 2019 Dec; 224(9):3399-3408. PubMed ID: 31624907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcranial magnetic stimulation in the visual system. I. The psychophysics of visual suppression.
    Kammer T; Puls K; Strasburger H; Hill NJ; Wichmann FA
    Exp Brain Res; 2005 Jan; 160(1):118-28. PubMed ID: 15368086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two means of suppressing visual awareness: a direct comparison of visual masking and transcranial magnetic stimulation.
    Railo H; Koivisto M
    Cortex; 2012 Mar; 48(3):333-43. PubMed ID: 21232737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does TMS on V3 block conscious visual perception?
    Salminen-Vaparanta N; Koivisto M; Vorobyev V; Alakurtti K; Revonsuo A
    Neuropsychologia; 2019 May; 128():223-231. PubMed ID: 29137989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The perceptual and functional consequences of parietal top-down modulation on the visual cortex.
    Silvanto J; Muggleton N; Lavie N; Walsh V
    Cereb Cortex; 2009 Feb; 19(2):327-30. PubMed ID: 18515296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subjective characteristics of TMS-induced phosphenes originating in human V1 and V2.
    Salminen-Vaparanta N; Vanni S; Noreika V; Valiulis V; Móró L; Revonsuo A
    Cereb Cortex; 2014 Oct; 24(10):2751-60. PubMed ID: 23696280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual hemifield mapping using transcranial magnetic stimulation coregistered with cortical surfaces derived from magnetic resonance images.
    Potts GF; Gugino LD; Leventon ME; Grimson WE; Kikinis R; Cote W; Alexander E; Anderson JE; Ettinger GJ; Aglio LS; Shenton ME
    J Clin Neurophysiol; 1998 Jul; 15(4):344-50. PubMed ID: 9736468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the visual brain areas susceptible to phosphene induction through brain stimulation.
    Schaeffner LF; Welchman AE
    Exp Brain Res; 2017 Jan; 235(1):205-217. PubMed ID: 27683006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interhemispheric transfer of phosphenes generated by occipital versus parietal transcranial magnetic stimulation.
    Marzi CA; Mancini F; Savazzi S
    Exp Brain Res; 2009 Jan; 192(3):431-41. PubMed ID: 18663438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perceptual learning of line orientation modifies the effects of transcranial magnetic stimulation of visual cortex.
    Neary K; Anand S; Hotson JR
    Exp Brain Res; 2005 Mar; 162(1):23-34. PubMed ID: 15578168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Right hemisphere dominance directly predicts both baseline V1 cortical excitability and the degree of top-down modulation exerted over low-level brain structures.
    Arshad Q; Siddiqui S; Ramachandran S; Goga U; Bonsu A; Patel M; Roberts RE; Nigmatullina Y; Malhotra P; Bronstein AM
    Neuroscience; 2015 Dec; 311():484-9. PubMed ID: 26518461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed striate cortical activation during spatial attention.
    Noesselt T; Hillyard SA; Woldorff MG; Schoenfeld A; Hagner T; Jäncke L; Tempelmann C; Hinrichs H; Heinze HJ
    Neuron; 2002 Aug; 35(3):575-87. PubMed ID: 12165478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action-blindsight in healthy subjects after transcranial magnetic stimulation.
    Christensen MS; Kristiansen L; Rowe JB; Nielsen JB
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1353-7. PubMed ID: 18212129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unmasking human visual perception with the magnetic coil and its relationship to hemispheric asymmetry.
    Amassian VE; Cracco RQ; Maccabee PJ; Cracco JB; Rudell AP; Eberle L
    Brain Res; 1993 Mar; 605(2):312-6. PubMed ID: 8481781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronavigated TMS of early visual cortex eliminates unconscious processing of chromatic stimuli.
    Hurme M; Koivisto M; Henriksson L; Railo H
    Neuropsychologia; 2020 Jan; 136():107266. PubMed ID: 31758972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.