These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19465969)

  • 1. Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams.
    Yang XL; Cai L; Liu Q
    Opt Express; 2003 May; 11(9):1050-5. PubMed ID: 19465969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Larger bandgaps of two-dimensional triangular photonic crystals fabricated by holographic lithography can be realized by recording geometry design.
    Yang XL; Cai LZ; Wang YR
    Opt Express; 2004 Nov; 12(24):5850-6. PubMed ID: 19488224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Band gap of hexagonal 2D photonic crystals with elliptical holes recorded by interference lithography.
    Quiñónez F; Menezes JW; Cescato L; Rodriguez-Esquerre VF; Hernandez-Figueroa H; Mansano RD
    Opt Express; 2006 May; 14(11):4873-9. PubMed ID: 19516645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holographic design of a two-dimensional photonic crystal of square lattice with pincushion columns and large complete band gaps.
    Cai L; Feng CS; He MZ; Yang XL; Meng X; Dong GY; Yu X
    Opt Express; 2005 May; 13(11):4325-30. PubMed ID: 19495347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic band gap templating using optical interference lithography.
    Chan TY; Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046605. PubMed ID: 15903804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams.
    Cai LZ; Yang XL; Wang YR
    J Opt Soc Am A Opt Image Sci Vis; 2002 Nov; 19(11):2238-44. PubMed ID: 12413125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unfolding the band structure of non-crystalline photonic band gap materials.
    Tsitrin S; Williamson EP; Amoah T; Nahal G; Chan HL; Florescu M; Man W
    Sci Rep; 2015 Aug; 5():13301. PubMed ID: 26289434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified annular photonic crystals for enhanced band gap properties and iso-frequency contour engineering.
    Giden IH; Kurt H
    Appl Opt; 2012 Mar; 51(9):1287-96. PubMed ID: 22441474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All fourteen Bravais lattices can be formed by interference of four noncoplanar beams.
    Cai LZ; Yang XL; Wang YR
    Opt Lett; 2002 Jun; 27(11):900-2. PubMed ID: 18026317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-independent self-collimation based on pill-void photonic crystals with square symmetry.
    Xu Y; Chen XJ; Lan S; Dai QF; Guo Q; Wu LJ
    Opt Express; 2009 Mar; 17(6):4903-12. PubMed ID: 19293922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic band gaps in a two-dimensional hybrid triangular-graphite lattice.
    Martínez L; García-Martín A; Postigo P
    Opt Express; 2004 Nov; 12(23):5684-9. PubMed ID: 19488203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic bandgap engineering in hybrid one-dimensional photonic crystals containing all-dielectric elliptical metamaterials.
    Wu F; Liu T; Chen M; Xiao S
    Opt Express; 2022 Sep; 30(19):33911-33925. PubMed ID: 36242416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz angle-independent photonic bandgap in a one-dimensional photonic crystal containing InSb-based hyperbolic metamaterials.
    Wu F; Yu X; Panda A; Liu D
    Appl Opt; 2022 Sep; 61(26):7677-7684. PubMed ID: 36256368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of background dielectric on TE-polarized photonic bandgap of metallodielectric photonic crystals using Dirichlet-to-Neumann map method.
    Sedghi A; Rezaei B
    Appl Opt; 2016 Nov; 55(33):9417-9421. PubMed ID: 27869843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplication of photonic band gaps in one-dimensional photonic crystals by using hyperbolic metamaterial in IR range.
    Mohamed AG; Sabra W; Mehaney A; Aly AH; Elsayed HA
    Sci Rep; 2023 Jan; 13(1):324. PubMed ID: 36609630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic crystal vertical-cavity surface-emitting lasers with true photonic bandgap.
    Panajotov K; Dems M
    Opt Lett; 2010 Mar; 35(6):829-31. PubMed ID: 20237613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distortion of 3D SU8 photonic structures fabricated by four-beam holographic lithography withumbrella configuration.
    Zhu X; Xu Y; Yang S
    Opt Express; 2007 Dec; 15(25):16546-60. PubMed ID: 19550945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations.
    Wen F; David S; Checoury X; El Kurdi M; Boucaud P
    Opt Express; 2008 Aug; 16(16):12278-89. PubMed ID: 18679505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic amorphous diamond structure with a 3D photonic band gap.
    Edagawa K; Kanoko S; Notomi M
    Phys Rev Lett; 2008 Jan; 100(1):013901. PubMed ID: 18232763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Omnidirectional photonic bandgap in one-dimensional photonic crystals containing hyperbolic metamaterials.
    Lu G; Zhou X; Zhao Y; Zhang K; Zhou H; Li J; Diao C; Liu F; Wu A; Du G
    Opt Express; 2021 Sep; 29(20):31915-31923. PubMed ID: 34615273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.