These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19466)

  • 1. Hydroperoxide-dependent hydroxylation involving "H2O2-reducible hemoprotein" in microsomes of pea seeds. A new type enzyme acting on hydroperoxide and a physiological role of seed lipoxygenase.
    Ishimaru A; Yamazaki I
    J Biol Chem; 1977 Sep; 252(17):6118-24. PubMed ID: 19466
    [No Abstract]   [Full Text] [Related]  

  • 2. The carbon monoxide-binding hemoprotein reducible by hydrogen peroxide in microsomal fractions of pea seeds.
    Ishimaru A; Yamazaki I
    J Biol Chem; 1977 Jan; 252(1):199-204. PubMed ID: 13063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P-450.
    Nordblom GD; White RE; Coon MJ
    Arch Biochem Biophys; 1976 Aug; 175(2):524-33. PubMed ID: 8710
    [No Abstract]   [Full Text] [Related]  

  • 4. Induction of microsomal aryl hydrocarbon (3,4-benzo(alpha)pyrene) hydroxylase and cytochrome P-450K in rat kidney cortex. II. Interactions with the induced hemoprotein.
    Jakobsson S; Grundin R; Thor H; Cinti DL
    Arch Biochem Biophys; 1973 Oct; 158(2):556-65. PubMed ID: 4782521
    [No Abstract]   [Full Text] [Related]  

  • 5. Involvement of cytochrome P-450 in the intracellular formation of lipid peroxides.
    O'brien PJ; Rahimtula A
    J Agric Food Chem; 1975; 23(2):154-8. PubMed ID: 805803
    [No Abstract]   [Full Text] [Related]  

  • 6. Purification and characterization of solubilized peroxygenase from microsomes of pea seeds.
    Ishimaru A
    J Biol Chem; 1979 Sep; 254(17):8427-33. PubMed ID: 468835
    [No Abstract]   [Full Text] [Related]  

  • 7. Hydroperoxide catalyzed liver microsomal aromatic hydroxylation reactions involving cytochrome P-450.
    Rahimtula AD; O'Brien PJ
    Biochem Biophys Res Commun; 1974 Sep; 60(1):440-7. PubMed ID: 4153939
    [No Abstract]   [Full Text] [Related]  

  • 8. Reconstitution of the fatty acid hydroxylation function of cytochrome P-450BM-3 utilizing its individual recombinant hemo- and flavoprotein domains.
    Boddupalli SS; Oster T; Estabrook RW; Peterson JA
    J Biol Chem; 1992 May; 267(15):10375-80. PubMed ID: 1587824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolonged depression of hepatic microsomal drug metabolism and hemoprotein levels following a single dose of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU).
    Litterst CL
    Biochem Pharmacol; 1981 May; 30(9):1014-6. PubMed ID: 7236311
    [No Abstract]   [Full Text] [Related]  

  • 10. [Inactivation of cytochrome P-450 by hydrogen peroxide formed in the catalytic cycle during peroxy-complex degradation].
    Mengazetdinov DE; Karuzina II; Archakov AI
    Biokhimiia; 1989 Jul; 54(7):1102-7. PubMed ID: 2804165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on cytochrome P-450-dependent lipid hydroperoxide reduction.
    Lindstrom TD; Aust SD
    Arch Biochem Biophys; 1984 Aug; 233(1):80-7. PubMed ID: 6431911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cytochrome P-450 in the hydroperoxide-catalyzed oxidation of alcohols by rat-liver microsomes.
    Rahimtula AD; O'Brien PJ
    Eur J Biochem; 1977 Jul; 77(1):201-8. PubMed ID: 20305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome P-450 as a microsomal peroxidase in steroid hydroperoxide reduction.
    Hrycay EC; O'Brien PJ
    Arch Biochem Biophys; 1972 Dec; 153(2):480-94. PubMed ID: 4662094
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of linoleic acid hydroperoxide on the hepatic monooxygenase systems of microsomes from untreated, phenobarbital-treated, and 3-methylcholanthrene-treated rats.
    Jeffery E; Kotake A; Azhary RE
    Mol Pharmacol; 1977 May; 13(3):415-25. PubMed ID: 406515
    [No Abstract]   [Full Text] [Related]  

  • 15. Hydroperoxide-supported cytochrome P-450-linked fatty acid hydroxylation in liver microsomes.
    Ellin A; Orrenius S
    FEBS Lett; 1975 Feb; 50(3):378-81. PubMed ID: 234863
    [No Abstract]   [Full Text] [Related]  

  • 16. Rate-limiting steps in drug metabolism by microsomes from CCl-4-cirrhotic rat liver.
    Tsyrlov IB; Lyakhovich VV
    Chem Biol Interact; 1975 Feb; 10(2):77-89. PubMed ID: 1126002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional reconstitution of rat liver cytochrome P-450 with mesohemin.
    Bornheim LM; Correia MA; Smith KM
    Biochem Biophys Res Commun; 1984 May; 121(1):95-101. PubMed ID: 6732820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the ability of cumene hydroperoxide and NaIO4 to support microsomal hydroxylations in biosynthesis and metabolism of bile acids.
    Danielsson H; Wikvall K
    FEBS Lett; 1976 Jul; 66(2):299-302. PubMed ID: 8336
    [No Abstract]   [Full Text] [Related]  

  • 19. Low level chemiluminescence of liver microsomal fractions initiated by tert-butyl hydroperoxide. Relation to microsomal hemoproteins, oxygen dependence, and lipid peroxidation.
    Cadenas E; Sies H
    Eur J Biochem; 1982 May; 124(2):349-56. PubMed ID: 7094917
    [No Abstract]   [Full Text] [Related]  

  • 20. (+)-bufuralol 1'-hydroxylation activity in human and rhesus monkey intestine and liver.
    Prueksaritanont T; Dwyer LM; Cribb AE
    Biochem Pharmacol; 1995 Oct; 50(9):1521-5. PubMed ID: 7503805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.