These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 19466142)

  • 1. Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo.
    Wang RK; An L
    Opt Express; 2009 May; 17(11):8926-40. PubMed ID: 19466142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo.
    Wang RK
    Phys Med Biol; 2007 Dec; 52(23):N531-7. PubMed ID: 18029974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation.
    Nan N; Wang X; Bu P; Li Z; Guo X; Chen Y; Wang X; Yuan F; Sasaki O
    Appl Opt; 2014 Apr; 53(12):2669-76. PubMed ID: 24787594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography.
    An L; Subhush HM; Wilson DJ; Wang RK
    J Biomed Opt; 2010; 15(2):026011. PubMed ID: 20459256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo volumetric blood flow imaging using optical microangiography at capillary level resolution.
    Wang RK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():804. PubMed ID: 19162778
    [No Abstract]   [Full Text] [Related]  

  • 6. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography.
    An L; Wang RK
    Opt Express; 2008 Jul; 16(15):11438-52. PubMed ID: 18648464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying labial blood flow using optical Doppler tomography.
    Otis LL; Piao D; Gibson CW; Zhu Q
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2004 Aug; 98(2):189-94. PubMed ID: 15316546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization.
    Hong YJ; Makita S; Jaillon F; Ju MJ; Min EJ; Lee BH; Itoh M; Miura M; Yasuno Y
    Opt Express; 2012 Jan; 20(3):2740-60. PubMed ID: 22330511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging.
    Makita S; Jaillon F; Yamanari M; Yasuno Y
    Opt Express; 2012 Jan; 20(3):2681-92. PubMed ID: 22330505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography.
    Jaillon F; Makita S; Yabusaki M; Yasuno Y
    Opt Express; 2010 Jan; 18(2):1358-72. PubMed ID: 20173963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography.
    Larina IV; Sudheendran N; Ghosn M; Jiang J; Cable A; Larin KV; Dickinson ME
    J Biomed Opt; 2008; 13(6):060506. PubMed ID: 19123647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography.
    Ren H; Sun T; MacDonald DJ; Cobb MJ; Li X
    Opt Lett; 2006 Apr; 31(7):927-9. PubMed ID: 16599214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development.
    Davis AM; Rothenberg FG; Shepherd N; Izatt JA
    J Opt Soc Am A Opt Image Sci Vis; 2008 Dec; 25(12):3134-43. PubMed ID: 19037405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in cerebral blood vasculature and flow in awake and anesthetized mouse cortex revealed by quantitative optical coherence tomography angiography.
    Rakymzhan A; Li Y; Tang P; Wang RK
    J Neurosci Methods; 2021 Apr; 353():109094. PubMed ID: 33549637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-velocity-flow imaging with real-time Doppler optical coherence tomography.
    Villey R; Carrion L; Morneau D; Boudoux C; Maciejko R
    Appl Opt; 2010 Jun; 49(16):3140-9. PubMed ID: 20517385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light.
    Varghese B; Rajan V; Van Leeuwen TG; Steenbergen W
    Rev Sci Instrum; 2007 Dec; 78(12):126103. PubMed ID: 18163752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doppler optical coherence imaging of converging flow.
    Proskurin SG; He Y; Wang RK
    Phys Med Biol; 2004 Apr; 49(7):1265-76. PubMed ID: 15128204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography.
    Atry F; Frye S; Richner TJ; Brodnick SK; Soehartono A; Williams J; Pashaie R
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):766-73. PubMed ID: 25373076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography.
    Meng J; Ding Z; Li J; Wang K; Wu T
    Opt Express; 2010 Jan; 18(2):1261-70. PubMed ID: 20173950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital signal processor-based real-time optical Doppler tomography system.
    Yan S; Piao D; Chen Y; Zhu Q
    J Biomed Opt; 2004; 9(3):454-63. PubMed ID: 15189082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.