These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19466191)

  • 1. A semiconductor laser device for the generation of surface-plasmons upon electrical injection.
    Bousseksou A; Colombelli R; Babuty A; De Wilde Y; Chassagneux Y; Sirtori C; Patriarche G; Beaudoin G; Sagnes I
    Opt Express; 2009 May; 17(11):9391-400. PubMed ID: 19466191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ generation of surface plasmon polaritons using a near-infrared laser diode.
    Costantini D; Greusard L; Bousseksou A; Rungsawang R; Zhang TP; Callard S; Decobert J; Lelarge F; Duan GH; De Wilde Y; Colombelli R
    Nano Lett; 2012 Sep; 12(9):4693-7. PubMed ID: 22924784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon effects induced by uncollimated emission of semiconductor microstructures.
    Lepage D; Dubowski JJ
    Opt Express; 2009 Jun; 17(12):10411-8. PubMed ID: 19506696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Square-wave oscillations in semiconductor ring lasers with delayed optical feedback.
    Mashal L; Van der Sande G; Gelens L; Danckaert J; Verschaffelt G
    Opt Express; 2012 Sep; 20(20):22503-16. PubMed ID: 23037399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-field analysis of metallic DFB lasers at telecom wavelengths.
    Greusard L; Costantini D; Bousseksou A; Decobert J; Lelarge F; Duan GH; De Wilde Y; Colombelli R
    Opt Express; 2013 May; 21(9):10422-9. PubMed ID: 23669898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical nanofocusing by tapering coupled photonic-plasmonic waveguides.
    He X; Yang L; Yang T
    Opt Express; 2011 Jul; 19(14):12865-72. PubMed ID: 21747437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite size effects in surface emitting Terahertz quantum cascade lasers.
    Mahler L; Tredicucci A; Beltram F; Walther C; Beere HE; Ritchie DA
    Opt Express; 2009 Apr; 17(8):6703-9. PubMed ID: 19365498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient unidirectional ridge excitation of surface plasmons.
    Radko IP; Bozhevolnyi SI; Brucoli G; Martín-Moreno L; García-Vidal FJ; Boltasseva A
    Opt Express; 2009 Apr; 17(9):7228-32. PubMed ID: 19399099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays.
    Chen HT; Lu H; Azad AK; Averitt RD; Gossard AC; Trugman SA; O'Hara JF; Taylor AJ
    Opt Express; 2008 May; 16(11):7641-8. PubMed ID: 18545471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity.
    Bai P; Gu MX; Wei XC; Li EP
    Opt Express; 2009 Dec; 17(26):24349-57. PubMed ID: 20052145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced transmission of electromagnetic waves through 1D plasmonic crystals.
    So JK; Jung HC; Min SH; Jang KH; Bak SH; Park GS
    Opt Express; 2010 Sep; 18(19):20222-8. PubMed ID: 20940913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically controlled Goos-Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure.
    Luo C; Guo J; Wang Q; Xiang Y; Wen S
    Opt Express; 2013 May; 21(9):10430-9. PubMed ID: 23669899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon-coupled emission on plasmonic Bragg gratings.
    Toma M; Toma K; Adam P; Homola J; Knoll W; Dostálek J
    Opt Express; 2012 Jun; 20(13):14042-53. PubMed ID: 22714469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves.
    Chung E; Kim YH; Tang WT; Sheppard CJ; So PT
    Opt Lett; 2009 Aug; 34(15):2366-8. PubMed ID: 19649099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of localized surface plasmons to U-shaped cavities for high-sensitivity and miniaturized detectors.
    Ho YL; Lee Y; Maeda E; Delaunay JJ
    Opt Express; 2013 Jan; 21(2):1531-40. PubMed ID: 23389135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power- or frequency-driven hysteresis for continuous-wave optically injected distributed-feedback semiconductor lasers.
    Blin S; Vaudel O; Besnard P; Gabet R
    Opt Express; 2009 May; 17(11):9288-99. PubMed ID: 19466181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Teardrop-shaped surface-plasmon resonators.
    Disfani MR; Abrishamian MS; Berini P
    Opt Express; 2012 Mar; 20(6):6472-7. PubMed ID: 22418529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient apertureless scanning probes using patterned plasmonic surfaces.
    Lee Y; Alu A; Zhang JX
    Opt Express; 2011 Dec; 19(27):25990-9. PubMed ID: 22274187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically controllable photonic molecule laser.
    Fasching G; Deutsch Ch; Benz A; Andrews AM; Klang P; Zobl R; Schrenk W; Strasser G; Ragulis P; Tamosiūnas V; Unterrainer K
    Opt Express; 2009 Oct; 17(22):20321-6. PubMed ID: 19997259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressing surface plasmons for nano-scale optical focusing.
    Choi H; Pile DF; Nam S; Bartal G; Zhang X
    Opt Express; 2009 Apr; 17(9):7519-24. PubMed ID: 19399129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.