These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19466466)

  • 1. A 3-D model of tumor progression based on complex automata driven by particle dynamics.
    Wcisło R; Dzwinel W; Yuen DA; Dudek AZ
    J Mol Model; 2009 Dec; 15(12):1517-39. PubMed ID: 19466466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PAM: Particle automata model in simulation of Fusarium graminearum pathogen expansion.
    Wcisło R; Miller SS; Dzwinel W
    J Theor Biol; 2016 Jan; 389():110-22. PubMed ID: 26549468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale modeling of tumor growth and angiogenesis: Evaluation of tumor-targeted therapy.
    Jafari Nivlouei S; Soltani M; Carvalho J; Travasso R; Salimpour MR; Shirani E
    PLoS Comput Biol; 2021 Jun; 17(6):e1009081. PubMed ID: 34161319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer Simulations of the Tumor Vasculature: Applications to Interstitial Fluid Flow, Drug Delivery, and Oxygen Supply.
    Welter M; Rieger H
    Adv Exp Med Biol; 2016; 936():31-72. PubMed ID: 27739042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A coupled finite element model of tumor growth and vascularization.
    Lloyd BA; Szczerba D; Székely G
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):874-81. PubMed ID: 18044651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient coarse simulation of a growing avascular tumor.
    Kavousanakis ME; Liu P; Boudouvis AG; Lowengrub J; Kevrekidis IG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031912. PubMed ID: 22587128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma.
    Levine HA; Pamuk S; Sleeman BD; Nilsen-Hamilton M
    Bull Math Biol; 2001 Sep; 63(5):801-63. PubMed ID: 11565406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pivotal role of angiogenesis in a multi-scale modeling of tumor growth exhibiting the avascular and vascular phases.
    Salavati H; Soltani M; Amanpour S
    Microvasc Res; 2018 Sep; 119():105-116. PubMed ID: 29742454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive landscapes hidden beneath biological cellular automata.
    Koopmans L; Youk H
    J Biol Phys; 2021 Dec; 47(4):355-369. PubMed ID: 34739687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D multi-cell simulation of tumor growth and angiogenesis.
    Shirinifard A; Gens JS; Zaitlen BL; Popławski NJ; Swat M; Glazier JA
    PLoS One; 2009 Oct; 4(10):e7190. PubMed ID: 19834621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumour angiogenesis as a chemo-mechanical surface instability.
    Giverso C; Ciarletta P
    Sci Rep; 2016 Mar; 6():22610. PubMed ID: 26948692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile hybrid agent-based, particle and partial differential equations method to analyze vascular adaptation.
    Garbey M; Casarin S; Berceli SA
    Biomech Model Mechanobiol; 2019 Feb; 18(1):29-44. PubMed ID: 30094656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiscale cell-based model of tumor growth for chemotherapy assessment and tumor-targeted therapy through a 3D computational approach.
    Jafari Nivlouei S; Soltani M; Shirani E; Salimpour MR; Travasso R; Carvalho J
    Cell Prolif; 2022 Mar; 55(3):e13187. PubMed ID: 35132721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method.
    Zheng X; Wise SM; Cristini V
    Bull Math Biol; 2005 Mar; 67(2):211-59. PubMed ID: 15710180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model.
    Joshi TV; Avitabile D; Owen MR
    Bull Math Biol; 2018 Jun; 80(6):1435-1475. PubMed ID: 29549576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method.
    Hogea CS; Murray BT; Sethian JA
    J Math Biol; 2006 Jul; 53(1):86-134. PubMed ID: 16791651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modelling, simulation and prediction of tumour-induced angiogenesis.
    Chaplain MA; Anderson AR
    Invasion Metastasis; 1996; 16(4-5):222-34. PubMed ID: 9311387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative models of vascular remodeling during tumor growth.
    Rieger H; Welter M
    Wiley Interdiscip Rev Syst Biol Med; 2015; 7(3):113-29. PubMed ID: 25808551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modelling suggests complex interactions between interstitial flow and tumour angiogenesis.
    Vilanova G; Burés M; Colominas I; Gomez H
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30185542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cellular automaton model for tumour growth in inhomogeneous environment.
    Alarcón T; Byrne HM; Maini PK
    J Theor Biol; 2003 Nov; 225(2):257-74. PubMed ID: 14575659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.