These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 19466530)
1. Composite bone substitute materials based on beta-tricalcium phosphate and magnesium-containing sol-gel derived bioactive glass. Hesaraki S; Safari M; Shokrgozar MA J Mater Sci Mater Med; 2009 Oct; 20(10):2011-7. PubMed ID: 19466530 [TBL] [Abstract][Full Text] [Related]
2. Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations. Hesaraki S; Safari M; Shokrgozar MA J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):459-69. PubMed ID: 19507141 [TBL] [Abstract][Full Text] [Related]
3. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth. Li XW; Yasuda HY; Umakoshi Y J Mater Sci Mater Med; 2006 Jun; 17(6):573-81. PubMed ID: 16691357 [TBL] [Abstract][Full Text] [Related]
4. Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes. Badr-Mohammadi MR; Hesaraki S; Zamanian A J Mater Sci Mater Med; 2014 Jan; 25(1):185-97. PubMed ID: 24101184 [TBL] [Abstract][Full Text] [Related]
5. Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics. García-Páez IH; Carrodeguas RG; De Aza AH; Baudín C; Pena P J Mech Behav Biomed Mater; 2014 Feb; 30():1-15. PubMed ID: 24216308 [TBL] [Abstract][Full Text] [Related]
6. Effect of Mg(2+) doping on beta-alpha phase transition in tricalcium phosphate (TCP) bioceramics. Frasnelli M; Sglavo VM Acta Biomater; 2016 Mar; 33():283-9. PubMed ID: 26796207 [TBL] [Abstract][Full Text] [Related]
7. Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility. Kim HW; Georgiou G; Knowles JC; Koh YH; Kim HE Biomaterials; 2004 Aug; 25(18):4203-13. PubMed ID: 15046910 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid. Hirakata LM; Kon M; Asaoka K Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174 [TBL] [Abstract][Full Text] [Related]
9. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications. Bellucci D; Sola A; Cannillo V J Biomed Mater Res A; 2016 Apr; 104(4):1030-56. PubMed ID: 26646669 [TBL] [Abstract][Full Text] [Related]
10. Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass. Behnamghader A; Bagheri N; Raissi B; Moztarzadeh F J Mater Sci Mater Med; 2008 Jan; 19(1):197-201. PubMed ID: 17597356 [TBL] [Abstract][Full Text] [Related]
11. Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility. Ryu HS; Hong KS; Lee JK; Kim DJ; Lee JH; Chang BS; Lee DH; Lee CK; Chung SS Biomaterials; 2004 Feb; 25(3):393-401. PubMed ID: 14585687 [TBL] [Abstract][Full Text] [Related]
12. Structural characterization and biological fluid interaction of Sol-Gel-derived Mg-substituted biphasic calcium phosphate ceramics. Gomes S; Renaudin G; Jallot E; Nedelec JM ACS Appl Mater Interfaces; 2009 Feb; 1(2):505-13. PubMed ID: 20353243 [TBL] [Abstract][Full Text] [Related]
13. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures. Montufar EB; Casas-Luna M; Horynová M; Tkachenko S; Fohlerová Z; Diaz-de-la-Torre S; Dvořák K; Čelko L; Kaiser J Acta Biomater; 2018 Apr; 70():293-303. PubMed ID: 29432984 [TBL] [Abstract][Full Text] [Related]
14. Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes. Bas M; Daglilar S; Kuskonmaz N; Kalkandelen C; Erdemir G; Kuruca SE; Tulyaganov D; Yoshioka T; Gunduz O; Ficai D; Ficai A Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33138182 [TBL] [Abstract][Full Text] [Related]
15. Preparation and in vitro bioactivity of zinc containing sol-gel-derived bioglass materials. Oki A; Parveen B; Hossain S; Adeniji S; Donahue H J Biomed Mater Res A; 2004 May; 69(2):216-21. PubMed ID: 15057994 [TBL] [Abstract][Full Text] [Related]
16. Novel bioactive materials with different mechanical properties. Kokubo T; Kim HM; Kawashita M Biomaterials; 2003 Jun; 24(13):2161-75. PubMed ID: 12699652 [TBL] [Abstract][Full Text] [Related]
17. Mechanical and tribological properties of the tricalcium phosphate - magnesium oxide composites. Trabelsi M; AlShahrani I; Algarni H; Ben Ayed F; Yousef ES Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():716-729. PubMed ID: 30606585 [TBL] [Abstract][Full Text] [Related]
18. Preparation, characterization and mechanical performance of dense beta-TCP ceramics with/without magnesium substitution. Zhang X; Jiang F; Groth T; Vecchio KS J Mater Sci Mater Med; 2008 Sep; 19(9):3063-70. PubMed ID: 18392667 [TBL] [Abstract][Full Text] [Related]
19. ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and in vitro bone-cell material interactions. Bandyopadhyay A; Petersen J; Fielding G; Banerjee S; Bose S J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2203-12. PubMed ID: 22997062 [TBL] [Abstract][Full Text] [Related]
20. An improvement in sintering property of beta-tricalcium phosphate by addition of calcium pyrophosphate. Ryu HS; Youn HJ; Hong KS; Chang BS; Lee CK; Chung SS Biomaterials; 2002 Feb; 23(3):909-14. PubMed ID: 11771710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]