These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
981 related articles for article (PubMed ID: 19466813)
1. Accelerated oxidation of epinephrine by silica nanoparticles. Tao Z; Wang G; Goodisman J; Asefa T Langmuir; 2009 Sep; 25(17):10183-8. PubMed ID: 19466813 [TBL] [Abstract][Full Text] [Related]
2. Mesoporosity and functional group dependent endocytosis and cytotoxicity of silica nanomaterials. Tao Z; Toms BB; Goodisman J; Asefa T Chem Res Toxicol; 2009 Nov; 22(11):1869-80. PubMed ID: 19817448 [TBL] [Abstract][Full Text] [Related]
3. Isomer-dependent adsorption and release of cis- and trans-platin anticancer drugs by mesoporous silica nanoparticles. Tao Z; Xie Y; Goodisman J; Asefa T Langmuir; 2010 Jun; 26(11):8914-24. PubMed ID: 20148511 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen bonding of water confined in mesoporous silica MCM-41 and SBA-15 studied by 1H solid-state NMR. Grünberg B; Emmler T; Gedat E; Shenderovich I; Findenegg GH; Limbach HH; Buntkowsky G Chemistry; 2004 Nov; 10(22):5689-96. PubMed ID: 15470692 [TBL] [Abstract][Full Text] [Related]
5. Proton absorption in as-synthesized mesoporous silica nanoparticles as a structure-function relationship probing mechanism. Strømme M; Atluri R; Brohede U; Frenning G; Garcia-Bennett AE Langmuir; 2009 Apr; 25(8):4306-10. PubMed ID: 19281159 [TBL] [Abstract][Full Text] [Related]
7. Formation of silica nanoparticles in microemulsions. Finnie KS; Bartlett JR; Barbé CJ; Kong L Langmuir; 2007 Mar; 23(6):3017-24. PubMed ID: 17300209 [TBL] [Abstract][Full Text] [Related]
8. Impregnated silica nanoparticles for the reactive removal of sulphur mustard from solutions. Singh B; Saxena A; Nigam AK; Ganesan K; Pandey P J Hazard Mater; 2009 Jan; 161(2-3):933-40. PubMed ID: 18513865 [TBL] [Abstract][Full Text] [Related]
9. Properties of iron-based mesoporous silica for the CWPO of phenol: a comparison between impregnation and co-condensation routes. Xiang L; Royer S; Zhang H; Tatibouët JM; Barrault J; Valange S J Hazard Mater; 2009 Dec; 172(2-3):1175-84. PubMed ID: 19709804 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of carbon nanotubes using mesoporous Fe-MCM-41 catalysts. Ko JR; Ahn WS J Nanosci Nanotechnol; 2006 Nov; 6(11):3442-5. PubMed ID: 17252785 [TBL] [Abstract][Full Text] [Related]
11. A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery. Park HS; Kim CW; Lee HJ; Choi JH; Lee SG; Yun YP; Kwon IC; Lee SJ; Jeong SY; Lee SC Nanotechnology; 2010 Jun; 21(22):225101. PubMed ID: 20453291 [TBL] [Abstract][Full Text] [Related]
13. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Torney F; Trewyn BG; Lin VS; Wang K Nat Nanotechnol; 2007 May; 2(5):295-300. PubMed ID: 18654287 [TBL] [Abstract][Full Text] [Related]
14. Surfactant templating effects on the encapsulation of iron oxide nanoparticles within silica microspheres. Zheng T; Pang J; Tan G; He J; McPherson GL; Lu Y; John VT; Zhan J Langmuir; 2007 Apr; 23(9):5143-7. PubMed ID: 17397201 [TBL] [Abstract][Full Text] [Related]
15. Photosynthetic oxygen evolution in mesoporous silica material: adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA. Noji T; Kamidaki C; Kawakami K; Shen JR; Kajino T; Fukushima Y; Sekitoh T; Itoh S Langmuir; 2011 Jan; 27(2):705-13. PubMed ID: 21171572 [TBL] [Abstract][Full Text] [Related]
16. Controlled synthesis, characterization, and catalytic properties of Mn(2)O(3) and Mn(3)O(4) nanoparticles supported on mesoporous silica SBA-15. Han YF; Chen F; Zhong Z; Ramesh K; Chen L; Widjaja E J Phys Chem B; 2006 Dec; 110(48):24450-6. PubMed ID: 17134200 [TBL] [Abstract][Full Text] [Related]
17. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. Lin YS; Haynes CL J Am Chem Soc; 2010 Apr; 132(13):4834-42. PubMed ID: 20230032 [TBL] [Abstract][Full Text] [Related]
18. Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. Liu HM; Wu SH; Lu CW; Yao M; Hsiao JK; Hung Y; Lin YS; Mou CY; Yang CS; Huang DM; Chen YC Small; 2008 May; 4(5):619-26. PubMed ID: 18491363 [TBL] [Abstract][Full Text] [Related]
19. High surface area Au-SBA-15 and Au-MCM-41 materials synthesis: tryptophan amino acid mediated confinement of gold nanostructures within the mesoporous silica pore walls. Selvakannan P; Mantri K; Tardio J; Bhargava SK J Colloid Interface Sci; 2013 Mar; 394():475-84. PubMed ID: 23351474 [TBL] [Abstract][Full Text] [Related]
20. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. Zhao Y; Sun X; Zhang G; Trewyn BG; Slowing II; Lin VS ACS Nano; 2011 Feb; 5(2):1366-75. PubMed ID: 21294526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]