These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19466895)

  • 1. Air-dictated bottom spray process: impact of fluid dynamics on granule growth and morphology.
    Liew CV; Er DZ; Heng PW
    Drug Dev Ind Pharm; 2009 Jul; 35(7):866-76. PubMed ID: 19466895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layered growth with bottom-spray granulation for spray deposition of drug.
    Er DZ; Liew CV; Heng PW
    Int J Pharm; 2009 Jul; 377(1-2):16-24. PubMed ID: 19426788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of fluid bed granulation utilizing artificial neural network.
    Behzadi SS; Klocker J; Hüttlin H; Wolschann P; Viernstein H
    Int J Pharm; 2005 Mar; 291(1-2):139-48. PubMed ID: 15707740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of in-line spatial filter velocimetry as PAT monitoring tool for particle growth during fluid bed granulation.
    Burggraeve A; Van Den Kerkhof T; Hellings M; Remon JP; Vervaet C; De Beer T
    Eur J Pharm Biopharm; 2010 Sep; 76(1):138-46. PubMed ID: 20554021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation into the usefulness of different empirical modeling techniques for better control of spray-on fluidized bed melt granulation.
    Aleksić I; Đuriš J; Ibrić S; Parojčić J
    Int J Pharm; 2015 Dec; 496(2):627-35. PubMed ID: 26551673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving flow properties of ibuprofen by fluidized bed particle thin-coating.
    Ehlers H; Räikkönen H; Antikainen O; Heinämäki J; Yliruusi J
    Int J Pharm; 2009 Feb; 368(1-2):165-70. PubMed ID: 19010403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of fluidized bed granulation process using conventional and novel modeling techniques.
    Petrović J; Chansanroj K; Meier B; Ibrić S; Betz G
    Eur J Pharm Sci; 2011 Oct; 44(3):227-34. PubMed ID: 21839830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of the fluid dynamics of bottom spray fluid bed coaters.
    Chan LW; Tang ES; Heng PW
    AAPS PharmSciTech; 2006 Apr; 7(2):E37. PubMed ID: 16796355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online monitoring of particle mass flow rate in bottom spray fluid bed coating--development and application.
    Wang LK; Heng PW; Liew CV
    Int J Pharm; 2010 Aug; 395(1-2):215-21. PubMed ID: 20594985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscale granulation in a fluid bed powder processor using electrostatic atomisation.
    Kivikero N; Murtomaa M; Ingelbeen B; Antikainen O; Räsänen E; Mannermaa JP; Juppo AM
    Eur J Pharm Biopharm; 2009 Jan; 71(1):130-7. PubMed ID: 18703138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-line spatial filtering velocimetry for particle size and film thickness determination in fluidized-bed pellet coating processes.
    Folttmann F; Knop K; Kleinebudde P; Pein M
    Eur J Pharm Biopharm; 2014 Nov; 88(3):931-8. PubMed ID: 25460149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation on side-spray fluidized bed granulation with swirling airflow.
    Wong PM; Chan LW; Heng PW
    AAPS PharmSciTech; 2013 Mar; 14(1):211-21. PubMed ID: 23263750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a fractional factorial design to evaluate granulations prepared in a fluidized bed.
    Meshali M; El-Banna HM; El-Sabbagh H
    Pharmazie; 1983 May; 38(5):323-5. PubMed ID: 6611629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of in situ fluid bed melt granulation using response surface methodology.
    Kukec S; Vrečer F; Dreu R
    Acta Pharm; 2012 Dec; 62(4):497-513. PubMed ID: 23333886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring the fluidized bed granulation process based on S-statistic analysis of a pressure time series.
    Chaplin G; Pugsley T; Winters C
    AAPS PharmSciTech; 2005 Sep; 6(2):E198-201. PubMed ID: 16353978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of agglomeration in fluidized bed coating. II. Measurement of mist size in a fluidized bed chamber and effect of sodium chloride addition on mist size.
    Yuasa H; Nakano T; Kanaya Y
    Int J Pharm; 1999 Feb; 178(1):1-10. PubMed ID: 10205620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling continuous-flow chemistry in microstructured devices for pharmaceutical and fine-chemical production.
    Kockmann N; Gottsponer M; Zimmermann B; Roberge DM
    Chemistry; 2008; 14(25):7470-7. PubMed ID: 18613163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of single pot and multiphase granulation. Part 2: Effect of the drying process on granules manufactured in a single pot granulator and dried either in situ or in a fluid bed dryer.
    Giry K; Viana M; Genty M; Louvet F; Wüthrich P; Chulia D
    Pharm Dev Technol; 2009; 14(2):149-58. PubMed ID: 19519187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis.
    Liu H; Li M
    Int J Pharm; 2014 Nov; 475(1-2):256-69. PubMed ID: 25181553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of drying-induced stresses in pharmaceutical granules prepared in continuous production line.
    Mezhericher M
    Eur J Pharm Biopharm; 2014 Nov; 88(3):866-78. PubMed ID: 25152956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.