BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 19466903)

  • 21. Too little, too late: chasing atrial fibrillation with sodium channel antagonists.
    Anderson ME
    J Cardiovasc Electrophysiol; 2006 Jun; 17(6):655-6. PubMed ID: 16836717
    [No Abstract]   [Full Text] [Related]  

  • 22. Atrial-selective sodium channel block as a novel strategy for the management of atrial fibrillation.
    Antzelevitch C; Burashnikov A
    J Electrocardiol; 2009; 42(6):543-8. PubMed ID: 19698954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-channel blockers for treatment of atrial fibrillation: an effective strategy?
    Van Wagoner DR
    Cardiovasc Res; 2013 Apr; 98(1):5-6. PubMed ID: 23455549
    [No Abstract]   [Full Text] [Related]  

  • 24. Atrial-selective drugs for treatment of atrial fibrillation.
    Ravens U; Christ T
    Herzschrittmacherther Elektrophysiol; 2010 Dec; 21(4):217-21. PubMed ID: 21082185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigational Anti-Atrial Fibrillation Pharmacology and Mechanisms by Which Antiarrhythmics Terminate the Arrhythmia: Where Are We in 2020?
    Burashnikov A
    J Cardiovasc Pharmacol; 2020 Nov; 76(5):492-505. PubMed ID: 33165131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. "Early" class III drugs for the treatment of atrial fibrillation: efficacy and atrial selectivity of AVE0118 in remodeled atria of the goat.
    Blaauw Y; Gögelein H; Tieleman RG; van Hunnik A; Schotten U; Allessie MA
    Circulation; 2004 Sep; 110(13):1717-24. PubMed ID: 15364815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-ion channel blockers as anti-arrhythmic drugs (reversal of structural remodeling).
    Goette A; Bukowska A; Lendeckel U
    Curr Opin Pharmacol; 2007 Apr; 7(2):219-24. PubMed ID: 17276728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmacological prevention of atrial tachycardia induced atrial remodeling as a potential therapeutic strategy.
    Shinagawa K; Derakhchan K; Nattel S
    Pacing Clin Electrophysiol; 2003 Mar; 26(3):752-64. PubMed ID: 12698678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Medical management of atrial fibrillation: future directions.
    Page RL
    Heart Rhythm; 2007 Mar; 4(3 Suppl):S91-4. PubMed ID: 17336894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of late sodium channel current block in the management of atrial fibrillation.
    Burashnikov A; Antzelevitch C
    Cardiovasc Drugs Ther; 2013 Feb; 27(1):79-89. PubMed ID: 23108433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antifibrillatory agents and potassium channels in the atria: pore block versus channel trafficking.
    McEwen DP; Martens JR
    Mol Interv; 2009 Apr; 9(2):79-86. PubMed ID: 19401540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pharmacotherapy of atrial fibrillation: a pathophysiological perspective and review.
    Jacob S; Ali OA; Pidlaoan V; Badheka AO; Kerin NZ
    Am J Ther; 2011 May; 18(3):241-60. PubMed ID: 20861719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel anti-arrhythmic agents for the treatment of atrial fibrillation.
    Wettwer E; Christ T; Dobrev D; Ravens U
    Curr Opin Pharmacol; 2007 Apr; 7(2):214-8. PubMed ID: 17303472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Widening of the excitable gap and enlargement of the core of reentry during atrial fibrillation with a pure sodium channel blocker in canine atria.
    Kawase A; Ikeda T; Nakazawa K; Ashihara T; Namba T; Kubota T; Sugi K; Hirai H
    Circulation; 2003 Feb; 107(6):905-10. PubMed ID: 12591763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Late Sodium Current in Atrial Cardiomyocytes Contributes to the Induced and Spontaneous Atrial Fibrillation in Rabbit Hearts.
    Chu Y; Yang Q; Ren L; Yu S; Liu Z; Chen Y; Wei X; Huang S; Song L; Zhang P; Ma J; Wu L
    J Cardiovasc Pharmacol; 2020 Oct; 76(4):437-444. PubMed ID: 32675747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pharmacological therapy of atrial fibrillation.
    Patton KK; Page RL
    Expert Opin Investig Drugs; 2007 Feb; 16(2):169-79. PubMed ID: 17243937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anti-arrhythmic effects of I (Na), I (Kr), and combined I (Kr)-I (CaL) blockade in an experimental model of acute stretch-related atrial fibrillation.
    Kalifa J; Bernard M; Gout B; Bril A; Cozma D; Laurent P; Chalvidan T; Deharo JC; Djiane P; Cozzone P; Maixent JM
    Cardiovasc Drugs Ther; 2007 Feb; 21(1):47-53. PubMed ID: 17356910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tertiapin, a selective IKACh blocker, terminates atrial fibrillation with selective atrial effective refractory period prolongation.
    Hashimoto N; Yamashita T; Tsuruzoe N
    Pharmacol Res; 2006 Aug; 54(2):136-41. PubMed ID: 16725344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vernakalant: A novel agent for the termination of atrial fibrillation.
    Finnin M
    Am J Health Syst Pharm; 2010 Jul; 67(14):1157-64. PubMed ID: 20592320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of a highly selective acetylcholine-activated K+ channel blocker on experimental atrial fibrillation.
    Machida T; Hashimoto N; Kuwahara I; Ogino Y; Matsuura J; Yamamoto W; Itano Y; Zamma A; Matsumoto R; Kamon J; Kobayashi T; Ishiwata N; Yamashita T; Ogura T; Nakaya H
    Circ Arrhythm Electrophysiol; 2011 Feb; 4(1):94-102. PubMed ID: 21156770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.