These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1946712)

  • 1. Food deprivation and reinstatement phase shifts rat activity rhythms in constant light but not constant dark.
    Coleman GJ; Francis AJ
    Physiol Behav; 1991 Jul; 50(1):167-71. PubMed ID: 1946712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Food-deprivation-induced phase shifts in Sminthopsis macroura froggatti.
    Coleman GJ; O'Reilly HM; Armstrong SM
    J Biol Rhythms; 1989; 4(1):49-60. PubMed ID: 2519580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian clock resetting by sleep deprivation without exercise in Syrian hamsters: dark pulses revisited.
    Mistlberger RE; Belcourt J; Antle MC
    J Biol Rhythms; 2002 Jun; 17(3):227-37. PubMed ID: 12054194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wheel-running rhythms in Arvicanthis niloticus.
    Katona C; Smale L
    Physiol Behav; 1997 Mar; 61(3):365-72. PubMed ID: 9089754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase shifts to refeeding in the Syrian hamster mediated by running activity.
    Mistlberger RE; Sinclair SV; Marchant EG; Neil L
    Physiol Behav; 1997 Feb; 61(2):273-8. PubMed ID: 9035258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Daily restricted feeding effects on the circadian activity rhythms of the stripe-faced dunnart, Sminthopsis macroura.
    Kennedy GA; Coleman GJ; Armstrong SM
    J Biol Rhythms; 1996 Sep; 11(3):188-95. PubMed ID: 8872591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restricted feeding entrains circadian wheel-running activity rhythms of the kowari.
    Kennedy GA; Coleman GJ; Armstrong SM
    Am J Physiol; 1991 Oct; 261(4 Pt 2):R819-27. PubMed ID: 1928428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of food deprivation on locomotor activity, plasma glucose, and circadian clock resetting in Syrian hamsters.
    Mistlberger RE; Webb IC; Simon MM; Tse D; Su C
    J Biol Rhythms; 2006 Feb; 21(1):33-44. PubMed ID: 16461983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase shifts in circadian peripheral clocks caused by exercise are dependent on the feeding schedule in PER2::LUC mice.
    Sasaki H; Hattori Y; Ikeda Y; Kamagata M; Iwami S; Yasuda S; Shibata S
    Chronobiol Int; 2016; 33(7):849-62. PubMed ID: 27123825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Food entrainment to 4-h T cycles in rats kept under constant lighting conditions.
    Lax P; Zamora S; Madrid JA
    Physiol Behav; 1999 Aug; 67(2):307-14. PubMed ID: 10477063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase resetting in duper hamsters: specificity to photic zeitgebers and circadian phase.
    Manoogian EN; Leise TL; Bittman EL
    J Biol Rhythms; 2015 Apr; 30(2):129-43. PubMed ID: 25633984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase shifts of circadian rhythms in activity entrained to food access.
    Stephan FK
    Physiol Behav; 1984 Apr; 32(4):663-71. PubMed ID: 6484015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram.
    Ebling FJ; Lincoln GA; Wollnik F; Anderson N
    J Biol Rhythms; 1988; 3(4):365-84. PubMed ID: 2979646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between light- and feeding-entrainable circadian rhythms in the rat.
    Stephan FK
    Physiol Behav; 1986; 38(1):127-33. PubMed ID: 3786492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats.
    Wideman CH; Murphy HM
    Nutr Neurosci; 2009 Oct; 12(5):233-40. PubMed ID: 19761654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The two-oscillator circadian system of tree shrews (Tupaia belangeri) and its response to light and dark pulses.
    Meijer JH; Daan S; Overkamp GJ; Hermann PM
    J Biol Rhythms; 1990; 5(1):1-16. PubMed ID: 2133115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime.
    Challet E; Pévet P; Vivien-Roels B; Malan A
    J Biol Rhythms; 1997 Feb; 12(1):65-79. PubMed ID: 9104691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between nocturnal feeding and wheel running patterns in the rat.
    Stewart KT; Rosenwasser AM; Adler NT
    Physiol Behav; 1985 Apr; 34(4):601-8. PubMed ID: 4011741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.