BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 19467160)

  • 1. Mucus, phlegm, and sputum in cystic fibrosis.
    Rubin BK
    Respir Care; 2009 Jun; 54(6):726-32; discussion 732. PubMed ID: 19467160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MUC5AC and MUC5B Mucins Are Decreased in Cystic Fibrosis Airway Secretions.
    Henke MO; Renner A; Huber RM; Seeds MC; Rubin BK
    Am J Respir Cell Mol Biol; 2004 Jul; 31(1):86-91. PubMed ID: 14988081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mucins, mucus, and sputum.
    Voynow JA; Rubin BK
    Chest; 2009 Feb; 135(2):505-512. PubMed ID: 19201713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mucus properties in children with primary ciliary dyskinesia: comparison with cystic fibrosis.
    Bush A; Payne D; Pike S; Jenkins G; Henke MO; Rubin BK
    Chest; 2006 Jan; 129(1):118-23. PubMed ID: 16424421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of airway secretions in COPD--clinical applications.
    Henke MO; Shah SA; Rubin BK
    COPD; 2005 Sep; 2(3):377-90. PubMed ID: 17147002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mucoactive agents for airway mucus hypersecretory diseases.
    Rogers DF
    Respir Care; 2007 Sep; 52(9):1176-93; discussion 1193-7. PubMed ID: 17716385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant human DNase (rhDNase) influences phospholipid composition, surface activity, rheology and consecutively clearance indices of cystic fibrosis sputum.
    Griese M; App EM; Duroux A; Burkert A; Schams A
    Pulm Pharmacol Ther; 1997; 10(1):21-7. PubMed ID: 9344829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mucus-penetrating solid lipid nanoparticles for the treatment of cystic fibrosis: Proof of concept, challenges and pitfalls.
    Nafee N; Forier K; Braeckmans K; Schneider M
    Eur J Pharm Biopharm; 2018 Mar; 124():125-137. PubMed ID: 29291931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mucolytics in cystic fibrosis.
    Henke MO; Ratjen F
    Paediatr Respir Rev; 2007 Mar; 8(1):24-9. PubMed ID: 17419975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical and transport properties of sputum from children with idiopathic bronchiectasis.
    Redding GJ; Kishioka C; Martinez P; Rubin BK
    Chest; 2008 Dec; 134(6):1129-1134. PubMed ID: 18753467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of chondroitinase ABC on purulent sputum from cystic fibrosis and other patients.
    Khatri IA; Bhaskar KR; Lamont JT; Sajjan SU; Ho CK; Forstner J
    Pediatr Res; 2003 Apr; 53(4):619-27. PubMed ID: 12612214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acidic pH increases airway surface liquid viscosity in cystic fibrosis.
    Tang XX; Ostedgaard LS; Hoegger MJ; Moninger TO; Karp PH; McMenimen JD; Choudhury B; Varki A; Stoltz DA; Welsh MJ
    J Clin Invest; 2016 Mar; 126(3):879-91. PubMed ID: 26808501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of mucous glycoproteins in the rheologic properties of cystic fibrosis sputum.
    Lethem MI; James SL; Marriott C
    Am Rev Respir Dis; 1990 Nov; 142(5):1053-8. PubMed ID: 2240828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cystic Fibrosis Sputum Rheology Correlates With Both Acute and Longitudinal Changes in Lung Function.
    Ma JT; Tang C; Kang L; Voynow JA; Rubin BK
    Chest; 2018 Aug; 154(2):370-377. PubMed ID: 29559310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chest physiotherapy on cystic fibrosis sputum nanostructure: an experimental and theoretical approach.
    Abrami M; Maschio M; Conese M; Confalonieri M; Salton F; Gerin F; Dapas B; Farra R; Adrover A; Milcovich G; Fornasier C; Biasin A; Grassi M; Grassi G
    Drug Deliv Transl Res; 2022 Aug; 12(8):1943-1958. PubMed ID: 35286625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathological mucus and impaired mucus clearance in cystic fibrosis patients result from increased concentration, not altered pH.
    Hill DB; Long RF; Kissner WJ; Atieh E; Garbarine IC; Markovetz MR; Fontana NC; Christy M; Habibpour M; Tarran R; Forest MG; Boucher RC; Button B
    Eur Respir J; 2018 Dec; 52(6):. PubMed ID: 30361244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of PEGylation on the mucolytic activity of recombinant human deoxyribonuclease I in cystic fibrosis sputum.
    Guichard MJ; Kinoo D; Aubriot AS; Bauwens N; Gougué J; Vermeulen F; Lebecque P; Leal T; Vanbever R
    Clin Sci (Lond); 2018 Jul; 132(13):1439-1452. PubMed ID: 29871879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable microparticles designed to efficiently reach and act on cystic fibrosis mucus barrier.
    Cristallini C; Barbani N; Ventrelli L; Summa C; Filippi S; Capelôa T; Vitale E; Albera C; Messore B; Giachino C
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():19-28. PubMed ID: 30573241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mucus concentration-dependent biophysical abnormalities unify submucosal gland and superficial airway dysfunction in cystic fibrosis.
    Kato T; Radicioni G; Papanikolas MJ; Stoychev GV; Markovetz MR; Aoki K; Porterfield M; Okuda K; Barbosa Cardenas SM; Gilmore RC; Morrison CB; Ehre C; Burns KA; White KK; Brennan TA; Goodell HP; Thacker H; Loznev HT; Forsberg LJ; Nagase T; Rubinstein M; Randell SH; Tiemeyer M; Hill DB; Kesimer M; O'Neal WK; Ballard ST; Freeman R; Button B; Boucher RC
    Sci Adv; 2022 Apr; 8(13):eabm9718. PubMed ID: 35363522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical and functional properties of airway secretions in cystic fibrosis--therapeutic approaches.
    Puchelle E; de Bentzmann S; Zahm JM
    Respiration; 1995; 62 Suppl 1():2-12. PubMed ID: 7792436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.