These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
605 related articles for article (PubMed ID: 19467262)
1. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain. Chen YY; Lai HY; Lin SH; Cho CW; Chao WH; Liao CH; Tsang S; Chen YF; Lin SY J Neurosci Methods; 2009 Aug; 182(1):6-16. PubMed ID: 19467262 [TBL] [Abstract][Full Text] [Related]
2. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials. Myllymaa S; Myllymaa K; Korhonen H; Töyräs J; Jääskeläinen JE; Djupsund K; Tanila H; Lappalainen R Biosens Bioelectron; 2009 Jun; 24(10):3067-72. PubMed ID: 19380223 [TBL] [Abstract][Full Text] [Related]
4. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106 [TBL] [Abstract][Full Text] [Related]
5. Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials. Takahashi H; Ejiri T; Nakao M; Nakamura N; Kaga K; Hervé T IEEE Trans Biomed Eng; 2003 Apr; 50(4):510-6. PubMed ID: 12723063 [TBL] [Abstract][Full Text] [Related]
6. Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio. Takei K; Kawano T; Kawashima T; Sawada K; Kaneko H; Ishida M Biomed Microdevices; 2010 Feb; 12(1):41-8. PubMed ID: 19757069 [TBL] [Abstract][Full Text] [Related]
7. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. Otto KJ; Johnson MD; Kipke DR IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763 [TBL] [Abstract][Full Text] [Related]
8. Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Cheung KC; Renaud P; Tanila H; Djupsund K Biosens Bioelectron; 2007 Mar; 22(8):1783-90. PubMed ID: 17027251 [TBL] [Abstract][Full Text] [Related]
9. An active, flexible carbon nanotube microelectrode array for recording electrocorticograms. Chen YC; Hsu HL; Lee YT; Su HC; Yen SJ; Chen CH; Hsu WL; Yew TR; Yeh SR; Yao DJ; Chang YC; Chen H J Neural Eng; 2011 Jun; 8(3):034001. PubMed ID: 21474876 [TBL] [Abstract][Full Text] [Related]
10. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface. Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854 [TBL] [Abstract][Full Text] [Related]
11. Micro-multi-probe electrode array to measure neural signals. Chen CH; Yao DJ; Tseng SH; Lu SW; Chiao CC; Yeh SR Biosens Bioelectron; 2009 Mar; 24(7):1911-7. PubMed ID: 19027284 [TBL] [Abstract][Full Text] [Related]
12. Microelectrode array for chronic deep-brain microstimulation and recording. McCreery D; Lossinsky A; Pikov V; Liu X IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580 [TBL] [Abstract][Full Text] [Related]
13. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity. Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650 [TBL] [Abstract][Full Text] [Related]