These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 19467564)

  • 21. Wine wastes as carbon source for biological treatment of acid mine drainage.
    Costa MC; Santos ES; Barros RJ; Pires C; Martins M
    Chemosphere; 2009 May; 75(6):831-6. PubMed ID: 19201010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM; Zagury GJ
    J Hazard Mater; 2008 Sep; 157(2-3):358-66. PubMed ID: 18281152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron.
    Prommer H; Aziz LH; Bolaño N; Taubald H; Schüth C
    J Contam Hydrol; 2008 Apr; 97(1-2):13-26. PubMed ID: 18267347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers.
    Su C; Puls RW
    Chemosphere; 2007 Apr; 67(8):1653-62. PubMed ID: 17257645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.
    Ayala-Parra P; Sierra-Alvarez R; Field JA
    J Hazard Mater; 2016 May; 308():97-105. PubMed ID: 26808248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-level arsenite removal from groundwater by zero-valent iron.
    Lien HL; Wilkin RT
    Chemosphere; 2005 Apr; 59(3):377-86. PubMed ID: 15763090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic investigations of Se(VI) treatment in anoxic groundwater using granular iron and organic carbon: an EXAFS study.
    Gibson BD; Blowes DW; Lindsay MB; Ptacek CJ
    J Hazard Mater; 2012 Nov; 241-242():92-100. PubMed ID: 23040313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solid phase studies and geochemical modelling of low-cost permeable reactive barriers.
    Bartzas G; Komnitsas K
    J Hazard Mater; 2010 Nov; 183(1-3):301-8. PubMed ID: 20678863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB).
    Gibert O; Pomierny S; Rowe I; Kalin RM
    Bioresour Technol; 2008 Nov; 99(16):7587-96. PubMed ID: 18353637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of solid reactive mixtures for the development of biological permeable reactive barriers.
    Pagnanelli F; Viggi CC; Mainelli S; Toro L
    J Hazard Mater; 2009 Oct; 170(2-3):998-1005. PubMed ID: 19505754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers.
    Satyawali Y; Seuntjens P; Van Roy S; Joris I; Vangeel S; Dejonghe W; Vanbroekhoven K
    J Contam Hydrol; 2011 Apr; 123(3-4):83-93. PubMed ID: 21237527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 34S/32S fractionation during sulfate reduction in groundwater treatment systems: reactive transport modeling.
    Gibson BD; Amos RT; Blowes DW
    Environ Sci Technol; 2011 Apr; 45(7):2863-70. PubMed ID: 21355530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A laboratory study of landfill-leachate transport in soils.
    Islam J; Singhal N
    Water Res; 2004 Apr; 38(8):2035-42. PubMed ID: 15087184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of induced anoxia and reoxygenation on benthic fluxes of organic carbon, phosphate, iron, and manganese.
    Skoog AC; Arias-Esquivel VA
    Sci Total Environ; 2009 Nov; 407(23):6085-92. PubMed ID: 19748653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation and optimization of a passively operated compost-based system for remediation of acidic, highly iron- and sulfate-rich industrial waste water.
    Dann AL; Cooper RS; Bowman JP
    Water Res; 2009 May; 43(8):2302-16. PubMed ID: 19297003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of Escherichia coli and solutes during waste water infiltration in an urban alluvial aquifer.
    Foppen JW; van Herwerden M; Kebtie M; Noman A; Schijven JF; Stuyfzand PJ; Uhlenbrook S
    J Contam Hydrol; 2008 Jan; 95(1-2):1-16. PubMed ID: 17854950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sorption of high explosives to water-dispersible clay: influence of organic carbon, aluminosilicate clay, and extractable iron.
    Dontsova KM; Hayes C; Pennington JC; Porter B
    J Environ Qual; 2009; 38(4):1458-65. PubMed ID: 19465721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage.
    Kalin M; Fyson A; Wheeler WN
    Sci Total Environ; 2006 Aug; 366(2-3):395-408. PubMed ID: 16375949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulfur and oxygen isotope tracing in zero valent iron based In situ remediation system for metal contaminants.
    Kumar N; Millot R; Battaglia-Brunet F; Négrel P; Diels L; Rose J; Bastiaens L
    Chemosphere; 2013 Jan; 90(4):1366-71. PubMed ID: 23000047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.