BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 19467702)

  • 1. Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface.
    Lu Y; Wang D; Li T; Zhao X; Cao Y; Yang H; Duan YY
    Biomaterials; 2009 Sep; 30(25):4143-51. PubMed ID: 19467702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics.
    Lu Y; Li Y; Pan J; Wei P; Liu N; Wu B; Cheng J; Lu C; Wang L
    Biomaterials; 2012 Jan; 33(2):378-94. PubMed ID: 22018384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes.
    Rao L; Zhou H; Li T; Li C; Duan YY
    Acta Biomater; 2012 Jul; 8(6):2233-42. PubMed ID: 22406507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite.
    Moreau D; Villain A; Ku DN; Corté L
    Biomatter; 2014; 4():e28764. PubMed ID: 25482413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyurethane/poly(vinyl alcohol) hydrogel coating improves the cytocompatibility of neural electrodes.
    Li M; Zhou HH; Li T; Li CY; Xia ZY; Duan YY
    Neural Regen Res; 2015 Dec; 10(12):2048-53. PubMed ID: 26889197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating.
    Alba NA; Du ZJ; Catt KA; Kozai TD; Cui XT
    Biosensors (Basel); 2015 Oct; 5(4):618-46. PubMed ID: 26473938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of proliferation and differentiation of osteoblasts on apatite-coated poly(vinyl alcohol) hydrogel as an artificial articular cartilage material.
    Matsumura K; Hayami T; Hyon SH; Tsutsumi S
    J Biomed Mater Res A; 2010 Mar; 92(4):1225-32. PubMed ID: 19322880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Swelling behavior and morphological properties of semi-IPN hydrogels based on ionic and non-ionic components.
    Pulat M; Ozgündüz Hİ
    Biomed Mater Eng; 2014; 24(4):1725-33. PubMed ID: 24948456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymeric "smart" coatings to prevent foreign body response to implantable biosensors.
    Wang Y; Papadimitrakopoulos F; Burgess DJ
    J Control Release; 2013 Aug; 169(3):341-7. PubMed ID: 23298616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conducting Polymer-Hydrogel Interpenetrating Networks for Improving the Electrode-Neural Interface.
    Yan M; Wang L; Wu Y; Liao X; Zhong C; Wang L; Lu Y
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41310-41323. PubMed ID: 37590473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure of the interface between titanium and surrounding tissue in rat tibiae--a comparison study on titanium-coated and -uncoated plastic implants.
    Okamatsu K; Kido H; Sato A; Watazu A; Matsuura M
    Clin Implant Dent Relat Res; 2007 Jun; 9(2):100-11. PubMed ID: 17535334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel.
    Bichara DA; Bodugoz-Sentruk H; Ling D; Malchau E; Bragdon CR; Muratoglu OK
    Biomed Mater; 2014 Aug; 9(4):045012. PubMed ID: 25050611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug diffusion and binding in ionizable interpenetrating networks from poly(vinyl alcohol) and poly(acrylic acid).
    Peppas NA; Wright SL
    Eur J Pharm Biopharm; 1998 Jul; 46(1):15-29. PubMed ID: 9700019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(l-lactic acid).
    Zan X; Kozlov M; McCarthy TJ; Su Z
    Biomacromolecules; 2010 Apr; 11(4):1082-8. PubMed ID: 20307097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces.
    Lu Y; Li T; Zhao X; Li M; Cao Y; Yang H; Duan YY
    Biomaterials; 2010 Jul; 31(19):5169-81. PubMed ID: 20382421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grafting of cross-linked hydrogel networks to titanium surfaces.
    Muir BV; Myung D; Knoll W; Frank CW
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):958-66. PubMed ID: 24364560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH effects on the complexation, miscibility and radiation-induced crosslinking in poly(acrylic acid)-poly(vinyl alcohol) blends.
    Nurkeeva ZS; Mun GA; Dubolazov AV; Khutoryanskiy VV
    Macromol Biosci; 2005 May; 5(5):424-32. PubMed ID: 15889388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma protein adsorption pattern and tissue-implant reaction of poly(vinyl alcohol)/carboxymethyl-chitosan blend films.
    Wang LC; Chen XG; Xu QC; Liu CS; Yu le J; Zhou YM
    J Biomater Sci Polym Ed; 2008; 19(1):113-29. PubMed ID: 18177558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpenetrating Conducting Hydrogel Materials for Neural Interfacing Electrodes.
    Goding J; Gilmour A; Martens P; Poole-Warren L; Green R
    Adv Healthc Mater; 2017 May; 6(9):. PubMed ID: 28198591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(3,4-ethylenedioxythiophene)/multiwall carbon nanotube composite coatings for improving the stability of microelectrodes in neural prostheses applications.
    Zhou H; Cheng X; Rao L; Li T; Duan YY
    Acta Biomater; 2013 May; 9(5):6439-49. PubMed ID: 23402765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.