These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 19468043)

  • 1. Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic.
    Bellon S; Shikazono N; Cunniffe S; Lomax M; O'Neill P
    Nucleic Acids Res; 2009 Jul; 37(13):4430-40. PubMed ID: 19468043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of specific glycosylases in determining the mutagenic consequences of clustered DNA base damage.
    Shikazono N; Pearson C; O'Neill P; Thacker J
    Nucleic Acids Res; 2006; 34(13):3722-30. PubMed ID: 16893955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced repair capacity of a DNA clustered damage site comprised of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 2-deoxyribonolactone results in an increased mutagenic potential of these lesions.
    Cunniffe S; O'Neill P; Greenberg MM; Lomax ME
    Mutat Res; 2014 Apr; 762():32-9. PubMed ID: 24631220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchy of lesion processing governs the repair, double-strand break formation and mutability of three-lesion clustered DNA damage.
    Eccles LJ; Lomax ME; O'Neill P
    Nucleic Acids Res; 2010 Mar; 38(4):1123-34. PubMed ID: 19965771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An AP site can protect against the mutagenic potential of 8-oxoG when present within a tandem clustered site in E. coli.
    Cunniffe SM; Lomax ME; O'Neill P
    DNA Repair (Amst); 2007 Dec; 6(12):1839-49. PubMed ID: 17704010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological consequences of potential repair intermediates of clustered base damage site in Escherichia coli.
    Shikazono N; O'Neill P
    Mutat Res; 2009 Oct; 669(1-2):162-8. PubMed ID: 19540248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition and kinetics for excision of a base lesion within clustered DNA damage by the Escherichia coli proteins Fpg and Nth.
    David-Cordonnier MH; Laval J; O'Neill P
    Biochemistry; 2001 May; 40(19):5738-46. PubMed ID: 11341839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient formation of the tandem thymine glycol/8-oxo-7,8-dihydroguanine lesion in isolated DNA and the mutagenic and cytotoxic properties of the tandem lesions in Escherichia coli cells.
    Yuan B; Jiang Y; Wang Y; Wang Y
    Chem Res Toxicol; 2010 Jan; 23(1):11-9. PubMed ID: 20014805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased mutability and decreased repairability of a three-lesion clustered DNA-damaged site comprised of an AP site and bi-stranded 8-oxoG lesions.
    Cunniffe S; Walker A; Stabler R; O'Neill P; Lomax ME
    Int J Radiat Biol; 2014 Jun; 90(6):468-79. PubMed ID: 24597750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of excision of 8-oxo-guanine within DNA clustered damage by XRS5 nuclear extracts and purified human OGG1 protein.
    David-Cordonnier MH; Boiteux S; O'Neill P
    Biochemistry; 2001 Oct; 40(39):11811-8. PubMed ID: 11570881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutagenesis of 8-oxoguanine adjacent to an abasic site in simian kidney cells: tandem mutations and enhancement of G-->T transversions.
    Kalam MA; Basu AK
    Chem Res Toxicol; 2005 Aug; 18(8):1187-92. PubMed ID: 16097791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay of two major repair pathways in the processing of complex double-strand DNA breaks.
    Dobbs TA; Palmer P; Maniou Z; Lomax ME; O'Neill P
    DNA Repair (Amst); 2008 Aug; 7(8):1372-83. PubMed ID: 18571480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mutagenic potential of 8-oxoG/single strand break-containing clusters depends on their relative positions.
    Noguchi M; Urushibara A; Yokoya A; O'Neill P; Shikazono N
    Mutat Res; 2012 Apr; 732(1-2):34-42. PubMed ID: 22261346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustered DNA damage, influence on damage excision by XRS5 nuclear extracts and Escherichia coli Nth and Fpg proteins.
    David-Cordonnier MH; Laval J; O'Neill P
    J Biol Chem; 2000 Apr; 275(16):11865-73. PubMed ID: 10766813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites.
    Harrison L; Hatahet Z; Wallace SS
    J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thymine ring saturation and fragmentation products: lesion bypass, misinsertion and implications for mutagenesis.
    Evans J; Maccabee M; Hatahet Z; Courcelle J; Bockrath R; Ide H; Wallace S
    Mutat Res; 1993 May; 299(3-4):147-56. PubMed ID: 7683083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of DNA polymerase I in in vivo processing of clustered DNA damage.
    Shikazono N; Akamatsu K; Takahashi M; Noguchi M; Urushibara A; O'Neill P; Yokoya A
    Mutat Res; 2013 Sep; 749(1-2):9-15. PubMed ID: 23958410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base excision repair processing of abasic site/single-strand break lesions within clustered damage sites associated with XRCC1 deficiency.
    Mourgues S; Lomax ME; O'Neill P
    Nucleic Acids Res; 2007; 35(22):7676-87. PubMed ID: 17982170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strand with mutagenic lesion is preferentially used as a template in the region of a bi-stranded clustered DNA damage site in Escherichia coli.
    Shikazono N; Akamatsu K
    Sci Rep; 2020 Jun; 10(1):9737. PubMed ID: 32546758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex interplay of lesion-specific DNA repair enzyme on bistranded clustered DNA damage harboring Tg:G mismatch in nucleosome core particles.
    Kumari B; Sinha KK; DAS P
    J Biosci; 2018 Sep; 43(4):575-583. PubMed ID: 30207305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.