These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 19468157)
1. Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application. Zhang QS; Yan YH; Li SP; Feng T Biomed Mater; 2009 Jun; 4(3):035008. PubMed ID: 19468157 [TBL] [Abstract][Full Text] [Related]
2. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes. Singh A; Krogman NR; Sethuraman S; Nair LS; Sturgeon JL; Brown PW; Laurencin CT; Allcock HR Biomacromolecules; 2006 Mar; 7(3):914-8. PubMed ID: 16529431 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Huang L; Hu J; Lang L; Wang X; Zhang P; Jing X; Wang X; Chen X; Lelkes PI; Macdiarmid AG; Wei Y Biomaterials; 2007 Apr; 28(10):1741-51. PubMed ID: 17218007 [TBL] [Abstract][Full Text] [Related]
4. [Research progresses on electroactive and electrically conductive polymers for tissue engineering scaffolds]. Li MY; Bidez P; Guterman-Tretter E; Guo Y; MacDiarmid AG; Lelkes PI; Yuan XB; Yuan XY; Sheng J; Li H; Song CX; Yen W Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2006 Dec; 28(6):845-8. PubMed ID: 17260480 [TBL] [Abstract][Full Text] [Related]
5. The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers. Ryu W; Min SW; Hammerick KE; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ Biomaterials; 2007 Feb; 28(6):1174-84. PubMed ID: 17126395 [TBL] [Abstract][Full Text] [Related]
6. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Sung HJ; Meredith C; Johnson C; Galis ZS Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes. Nair LS; Lee DA; Bender JD; Barrett EW; Greish YE; Brown PW; Allcock HR; Laurencin CT J Biomed Mater Res A; 2006 Jan; 76(1):206-13. PubMed ID: 16265637 [TBL] [Abstract][Full Text] [Related]
9. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. Zhang Z; Rouabhia M; Wang Z; Roberge C; Shi G; Roche P; Li J; Dao LH Artif Organs; 2007 Jan; 31(1):13-22. PubMed ID: 17209956 [TBL] [Abstract][Full Text] [Related]
10. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Yang J; Yamato M; Kohno C; Nishimoto A; Sekine H; Fukai F; Okano T Biomaterials; 2005 Nov; 26(33):6415-22. PubMed ID: 16011847 [TBL] [Abstract][Full Text] [Related]
11. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Mercier NR; Costantino HR; Tracy MA; Bonassar LJ Biomaterials; 2005 May; 26(14):1945-52. PubMed ID: 15576168 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Nair LS; Bhattacharyya S; Bender JD; Greish YE; Brown PW; Allcock HR; Laurencin CT Biomacromolecules; 2004; 5(6):2212-20. PubMed ID: 15530035 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications. Leclerc E; Furukawa KS; Miyata F; Sakai Y; Ushida T; Fujii T Biomaterials; 2004 Aug; 25(19):4683-90. PubMed ID: 15120514 [TBL] [Abstract][Full Text] [Related]
14. [Neocartilage formation in vitro using transduced mesenchymal stem cells cultured on biomimetic biodegradable polymer scaffolds]. Guo XD; Du JY; Zheng QX; Liu Y; Duan DY; Quan DP; Lu ZJ Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2001 Aug; 23(4):373-7. PubMed ID: 12940080 [TBL] [Abstract][Full Text] [Related]
15. Adhesion and growth of human Schwann cells on trimethylene carbonate (co)polymers. Pêgo AP; Vleggeert-Lankamp CL; Deenen M; Lakke EA; Grijpma DW; Poot AA; Marani E; Feijen J J Biomed Mater Res A; 2003 Dec; 67(3):876-85. PubMed ID: 14613236 [TBL] [Abstract][Full Text] [Related]
16. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Akay G; Birch MA; Bokhari MA Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable 'intelligent' materials in response to physical stimuli for biomedical applications. Ju XJ; Xie R; Yang L; Chu LY Expert Opin Ther Pat; 2009 Apr; 19(4):493-507. PubMed ID: 19441928 [TBL] [Abstract][Full Text] [Related]
18. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Kwon IK; Kidoaki S; Matsuda T Biomaterials; 2005 Jun; 26(18):3929-39. PubMed ID: 15626440 [TBL] [Abstract][Full Text] [Related]
19. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270 [TBL] [Abstract][Full Text] [Related]
20. Biodegradable 'intelligent' materials in response to chemical stimuli for biomedical applications. Ju XJ; Xie R; Yang L; Chu LY Expert Opin Ther Pat; 2009 May; 19(5):683-96. PubMed ID: 19441941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]