These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19468316)

  • 1. Molecules, water, and radiant energy: new clues for the origin of life.
    Pollack GH; Figueroa X; Zhao Q
    Int J Mol Sci; 2009 Mar; 10(4):1419-1429. PubMed ID: 19468316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sunlight as an energetic driver in the synthesis of molecules necessary for life.
    Rapf RJ; Vaida V
    Phys Chem Chem Phys; 2016 Jul; 18(30):20067-84. PubMed ID: 27193698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of radiant energy on near-surface water.
    Chai B; Yoo H; Pollack GH
    J Phys Chem B; 2009 Oct; 113(42):13953-8. PubMed ID: 19827846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mean radiant temperature from global-scale numerical weather prediction models.
    Di Napoli C; Hogan RJ; Pappenberger F
    Int J Biometeorol; 2020 Jul; 64(7):1233-1245. PubMed ID: 32274575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar retinitis after minimal exposure.
    Gladstone GJ; Tasman W
    Arch Ophthalmol; 1978 Aug; 96(8):1368-9. PubMed ID: 678173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance enhancement of a solar still using a V-groove solar air collector-experimental study with energy, exergy, enviroeconomic, and exergoeconomic analysis.
    Azari P; Mirabdolah Lavasani A; Rahbar N; Eftekhari Yazdi M
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65525-65548. PubMed ID: 34319518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing solar spectrum utilization in photosynthesis: exploring exciton and site energy shifts as key mechanisms.
    Timpmann K; Rätsep M; Freiberg A
    Sci Rep; 2023 Dec; 13(1):22299. PubMed ID: 38102394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar-driven water-splitting provides a solution to the energy problem underpinning climate change.
    Barber J
    Biochem Soc Trans; 2020 Dec; 48(6):2865-2874. PubMed ID: 33242067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realizing artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Faraday Discuss; 2012; 155():9-26; discussion 103-14. PubMed ID: 22470964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.
    Sivula K
    Chimia (Aarau); 2013; 67(3):155-61. PubMed ID: 23574955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A slightly more massive young Sun as an explanation for warm temperatures on early Mars.
    Whitmire DP; Doyle LR; Reynolds RT; Matese JJ
    J Geophys Res; 1995 Mar; 100(E3):5457-64. PubMed ID: 11539571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast carrier dynamics in nanostructures for solar fuels.
    Baxter JB; Richter C; Schmuttenmaer CA
    Annu Rev Phys Chem; 2014; 65():423-47. PubMed ID: 24423371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation.
    Dau H; Zaharieva I
    Acc Chem Res; 2009 Dec; 42(12):1861-70. PubMed ID: 19908828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance comparison of solar still with inbuilt condenser and agitator over conventional solar still with energy and exergy analysis.
    Rajasekaran AK; Murugavel Kulandaivelu K
    Environ Sci Pollut Res Int; 2022 Nov; 29(55):83378-83388. PubMed ID: 35763147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis of water proton relaxation in gels and tissue.
    Chávez FV; Halle B
    Magn Reson Med; 2006 Jul; 56(1):73-81. PubMed ID: 16732591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation of solar still using evacuated tube collector with and without nanoparticles.
    Eswaran V; Subrananiam BSK; Athikesavan MM
    Environ Sci Pollut Res Int; 2023 Nov; 30(52):113002-113014. PubMed ID: 37848796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The design of a sunlight-focusing and solar tracking system: A potential application for the degradation of pharmaceuticals in water.
    Lin YC; Panchangam SC; Liu LC; Lin AY
    Chemosphere; 2019 Jan; 214():452-461. PubMed ID: 30273879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of a solar still with photovoltaic modules and electrical heater - Energy and exergy approach.
    Prasad AR; Athikesavan MM; Kabeel AE; Sumithra MG; Sathyamurthy R; Thakur AK
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57453-57465. PubMed ID: 35349068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.