BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19468321)

  • 1. Control and regulation of integrated mitochondrial function in metabolic and transport networks.
    Cortassa S; O'Rourke B; Winslow RL; Aon MA
    Int J Mol Sci; 2009 Apr; 10(4):1500-1513. PubMed ID: 19468321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic control analysis applied to mitochondrial networks.
    Cortassa S; Aon MA; O'Rourke B; Winslow RL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4673-6. PubMed ID: 22255380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modelling of the effects of cold atmospheric plasma on mitochondrial redox homeostasis and energy metabolism.
    Murakami T
    Sci Rep; 2019 Nov; 9(1):17138. PubMed ID: 31748630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function.
    Cortassa S; O'Rourke B; Winslow RL; Aon MA
    Biophys J; 2009 Mar; 96(6):2466-78. PubMed ID: 19289071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics.
    Cortassa S; Aon MA; Marbán E; Winslow RL; O'Rourke B
    Biophys J; 2003 Apr; 84(4):2734-55. PubMed ID: 12668482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of active elementary flux modes in mitochondria using selectively permeabilized CHO cells.
    Nicolae A; Wahrheit J; Nonnenmacher Y; Weyler C; Heinzle E
    Metab Eng; 2015 Nov; 32():95-105. PubMed ID: 26417715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of mitochondrial Ca2+ in the regulation of cellular energetics.
    Glancy B; Balaban RS
    Biochemistry; 2012 Apr; 51(14):2959-73. PubMed ID: 22443365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell energy metabolism: An update.
    Rigoulet M; Bouchez CL; Paumard P; Ransac S; Cuvellier S; Duvezin-Caubet S; Mazat JP; Devin A
    Biochim Biophys Acta Bioenerg; 2020 Nov; 1861(11):148276. PubMed ID: 32717222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
    Diederichs F
    Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of oxidative phosphorylation and energy dissipation by H+ ion recycling in rat-liver mitochondrial metabolizing pyruvate.
    Stucki JW
    Eur J Biochem; 1976 Sep; 68(2):551-62. PubMed ID: 10160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic dynamics in skeletal muscle during acute reduction in blood flow and oxygen supply to mitochondria: in-silico studies using a multi-scale, top-down integrated model.
    Dash RK; Li Y; Kim J; Beard DA; Saidel GM; Cabrera ME
    PLoS One; 2008 Sep; 3(9):e3168. PubMed ID: 18779864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes.
    Zhou L; Cortassa S; Wei AC; Aon MA; Winslow RL; O'Rourke B
    Biophys J; 2009 Oct; 97(7):1843-52. PubMed ID: 19804714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies on the control of oxidative phosphorylation in muscle mitochondria: application to mitochondrial deficiencies.
    Korzeniewski B; Mazat JP
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):143-8. PubMed ID: 8870661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG
    Biochem J; 1975 Mar; 146(3):537-47. PubMed ID: 167720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.
    Beard DA
    PLoS Comput Biol; 2006 Sep; 2(9):e107. PubMed ID: 16978045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial calcium and the regulation of metabolism in the heart.
    Williams GS; Boyman L; Lederer WJ
    J Mol Cell Cardiol; 2015 Jan; 78():35-45. PubMed ID: 25450609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state properties of coupled systems in mitochondrial oxidative phosphorylation.
    Hill TL
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2681-3. PubMed ID: 6248859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose sensing in the pancreatic beta cell: a computational systems analysis.
    Fridlyand LE; Philipson LH
    Theor Biol Med Model; 2010 May; 7():15. PubMed ID: 20497556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies.
    Zhou L; Cabrera ME; Okere IC; Sharma N; Stanley WC
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1036-46. PubMed ID: 16603683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.