BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19468321)

  • 21. Energetic aspects of transport of ADP and ATP through the mitochondrial membrane.
    Klingenberg M
    Ciba Found Symp; 1975; (31):105-24. PubMed ID: 238804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ADP and ATP transport in mitochondria and its carrier.
    Klingenberg M
    Biochim Biophys Acta; 2008 Oct; 1778(10):1978-2021. PubMed ID: 18510943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic simulation of mitochondrial respiration and oxidative phosphorylation: comparison with experimental results.
    Guillaud F; Hannaert P
    Acta Biotheor; 2008 Jun; 56(1-2):157-72. PubMed ID: 18231864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mathematical modeling of mitochondrial energy transduction.
    Bohnensack R
    Biomed Biochim Acta; 1985; 44(6):853-62. PubMed ID: 2931077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An in situ study of bioenergetic properties of human colorectal cancer: the regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome.
    Kaldma A; Klepinin A; Chekulayev V; Mado K; Shevchuk I; Timohhina N; Tepp K; Kandashvili M; Varikmaa M; Koit A; Planken M; Heck K; Truu L; Planken A; Valvere V; Rebane E; Kaambre T
    Int J Biochem Cell Biol; 2014 Oct; 55():171-86. PubMed ID: 25218857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial energetic metabolism-some general principles.
    Mazat JP; Ransac S; Heiske M; Devin A; Rigoulet M
    IUBMB Life; 2013 Mar; 65(3):171-9. PubMed ID: 23441039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC
    J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria.
    Territo PR; French SA; Balaban RS
    Cell Calcium; 2001 Jul; 30(1):19-27. PubMed ID: 11396984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mitochondrion and biologic oxidations.
    Nahrwold ML; Cohen PJ
    Clin Anesth; 1975; 11(1):1-23. PubMed ID: 164299
    [No Abstract]   [Full Text] [Related]  

  • 31. Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology.
    Wu F; Yang F; Vinnakota KC; Beard DA
    J Biol Chem; 2007 Aug; 282(34):24525-37. PubMed ID: 17591785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints.
    Ramakrishna R; Edwards JS; McCulloch A; Palsson BO
    Am J Physiol Regul Integr Comp Physiol; 2001 Mar; 280(3):R695-704. PubMed ID: 11171647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relation between mitochondrial calcium transport and control of energy metabolism.
    Hansford RG
    Rev Physiol Biochem Pharmacol; 1985; 102():1-72. PubMed ID: 2863864
    [No Abstract]   [Full Text] [Related]  

  • 34. Mitochondrial free [Ca2+] increases during ATP/ADP antiport and ADP phosphorylation: exploration of mechanisms.
    Haumann J; Dash RK; Stowe DF; Boelens AD; Beard DA; Camara AK
    Biophys J; 2010 Aug; 99(4):997-1006. PubMed ID: 20712982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial energetics and calcium coupling in the heart.
    Kohlhaas M; Nickel AG; Maack C
    J Physiol; 2017 Jun; 595(12):3753-3763. PubMed ID: 28105746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Current theories on the mechanism of energy coupling in mitochondria].
    Bogucka K
    Postepy Biochem; 1985; 31(1):5-28. PubMed ID: 2867539
    [No Abstract]   [Full Text] [Related]  

  • 37. Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Dec; 266(3):737-49. PubMed ID: 10583367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate oxidation and energy production by Guerin epithelioma mitochondria.
    Pawlicka E; Rzezycki CW
    Arch Geschwulstforsch; 1979; 49(2):124-31. PubMed ID: 224832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states.
    Jong YS; Davis EJ
    Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship of potassium ion transport and ATP synthesis in pea cotyledon mitochondria.
    Hamman WM; Spencer M
    Can J Biochem; 1977 Apr; 55(4):376-83. PubMed ID: 858087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.