BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 19469516)

  • 1. Ultrafast energy transfer from the intramolecular bending vibration to librations in liquid water.
    Ingrosso F; Rey R; Elsaesser T; Hynes JT
    J Phys Chem A; 2009 Jun; 113(24):6657-65. PubMed ID: 19469516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast energy relaxation and anisotropy decay of the librational motion in liquid water: A molecular dynamics study.
    Yagasaki T; Ono J; Saito S
    J Chem Phys; 2009 Oct; 131(16):164511. PubMed ID: 19894960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonequilibrium molecular dynamics simulations of vibrational energy relaxation of HOD in D2O.
    Kandratsenka A; Schroeder J; Schwarzer D; Vikhrenko VS
    J Chem Phys; 2009 May; 130(17):174507. PubMed ID: 19425790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Dynamics of Liquid Water: Energy Relaxation and Transfer Processes of the OH Stretch and the HOH Bend.
    Imoto S; Xantheas SS; Saito S
    J Phys Chem B; 2015 Aug; 119(34):11068-78. PubMed ID: 26042611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations and instantaneous normal-mode analysis of the vibrational relaxation of the C-H stretching modes of N-methylacetamide-d in liquid deuterated water.
    Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S
    J Phys Chem A; 2010 Nov; 114(43):11450-61. PubMed ID: 20932051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways for H2O bend vibrational relaxation in liquid water.
    Rey R; Ingrosso F; Elsaesser T; Hynes JT
    J Phys Chem A; 2009 Aug; 113(31):8949-62. PubMed ID: 19719303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast intermolecular dynamics of liquid water: a theoretical study on two-dimensional infrared spectroscopy.
    Yagasaki T; Saito S
    J Chem Phys; 2008 Apr; 128(15):154521. PubMed ID: 18433249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed dynamics of the nonradiative deactivation of adenine: a semiclassical dynamics study.
    Lei Y; Yuan S; Dou Y; Wang Y; Wen Z
    J Phys Chem A; 2008 Sep; 112(37):8497-504. PubMed ID: 18714969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast librational relaxation of H2O in liquid water.
    Petersen J; Møller KB; Rey R; Hynes JT
    J Phys Chem B; 2013 Apr; 117(16):4541-52. PubMed ID: 23131075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational energy relaxation of azide in water.
    Li S; Schmidt JR; Skinner JL
    J Chem Phys; 2006 Dec; 125(24):244507. PubMed ID: 17199355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-transfer-to-solvent-driven dissolution dynamics of I- (H2O)2-5 upon excitation: excited-state ab initio molecular dynamics simulations.
    Kołaski M; Lee HM; Pak C; Kim KS
    J Am Chem Soc; 2008 Jan; 130(1):103-12. PubMed ID: 18069831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast memory loss and relaxation processes in hydrogen-bonded systems.
    Elsaesser T
    Biol Chem; 2009 Nov; 390(11):1125-32. PubMed ID: 19663683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode-specific vibrational energy relaxation of amide I' and II' modes in N-methylacetamide/water clusters: intra- and intermolecular energy transfer mechanisms.
    Zhang Y; Fujisaki H; Straub JE
    J Phys Chem A; 2009 Apr; 113(13):3051-60. PubMed ID: 19320512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking energy transfer from excited to accepting modes: application to water bend vibrational relaxation.
    Rey R; Hynes JT
    Phys Chem Chem Phys; 2012 May; 14(18):6332-42. PubMed ID: 22402668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Libration induced stretching mode excitation for pump-probe spectroscopy in pure liquid water.
    Amir W; Gallot G; Hache F
    J Chem Phys; 2004 Oct; 121(16):7908-13. PubMed ID: 15485253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solute rotational dynamics at the water liquid/vapor interface.
    Benjamin I
    J Chem Phys; 2007 Nov; 127(20):204712. PubMed ID: 18052451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy transfer dynamics in the presence of preferential hydrogen bonding: collisions of highly vibrationally excited pyridine-h5, -d5, and -f5 with water.
    Liu Q; Havey DK; Mullin AS
    J Phys Chem A; 2008 Oct; 112(39):9509-15. PubMed ID: 18710206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of path integral molecular dynamics methods for the infrared absorption spectrum of liquid water.
    Habershon S; Fanourgakis GS; Manolopoulos DE
    J Chem Phys; 2008 Aug; 129(7):074501. PubMed ID: 19044777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.
    Vendrell O; Brill M; Gatti F; Lauvergnat D; Meyer HD
    J Chem Phys; 2009 Jun; 130(23):234305. PubMed ID: 19548725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio molecular dynamics simulations of an excited state of X(-)(H(2)O)(3) (X = Cl, I) complex.
    Kołaski M; Lee HM; Pak C; Dupuis M; Kim KS
    J Phys Chem A; 2005 Oct; 109(42):9419-23. PubMed ID: 16866390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.